skip to main content


Title: Lithosphere Structure and Seismic Anisotropy Offshore Eastern North America: Implications for Continental Breakup and Ultra‐Slow Spreading Dynamics
Abstract

The breakup of supercontinent Pangea occurred ∼200 Ma forming the Eastern North American Margin (ENAM). Yet, the precise timing and mechanics of breakup and onset of seafloor spreading remain poorly constrained. We investigate the relict lithosphere offshore eastern North America using ambient‐noise Rayleigh‐wave phase velocity (12–32 s) and azimuthal anisotropy (17–32 s) at the ENAM Community Seismic Experiment (CSE). Incorporating previous constraints on crustal structure, we construct a shear velocity model for the crust and upper ∼60 km of the mantle beneath the ENAM‐CSE. A low‐velocity lid (VSof 4.4–4.55 km/s) is revealed in the upper 15–20 km of the mantle that extends ∼200 km from the margin, terminating at the Blake Spur Magnetic Anomaly (BSMA). East of the BSMA, velocities are fast (>4.6 km/s) and characteristic of typical oceanic mantle lithosphere. We interpret the low‐velocity lid as stretched continental mantle lithosphere embedded with up to ∼15% retained gabbro. This implies that the BSMA marks successful breakup and onset of seafloor spreading ∼170 Ma, consistent with ENAM‐CSE active‐source studies that argue for breakup ∼25 Myr later than previously thought. We observe margin‐parallel Rayleigh‐wave azimuthal anisotropy (2%–4% peak‐to‐peak) in the lithosphere that approximately correlates with absolute plate motion (APM) at the time of spreading. We hypothesize that lithosphere formed during ultra‐slow seafloor spreading records APM‐modified olivine fabric rather than spreading‐parallel fabric typical of higher spreading rates. This work highlights the importance of present‐day passive margins for improving understanding of the fundamental rift‐to‐drift transition.

 
more » « less
NSF-PAR ID:
10366955
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
12
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lithospheric seismic anisotropy illuminates mid‐ocean ridge dynamics and the thermal evolution of oceanic plates. We utilize short‐period (5–7.5 s) ambient‐noise surface waves and 15‐ to 150‐s Rayleigh waves measured across the NoMelt ocean‐bottom array to invert for the complete radial and azimuthal anisotropy in the upper ∼35 km of ∼70‐Ma Pacific lithospheric mantle, and azimuthal anisotropy through the underlying asthenosphere. Strong azimuthal variations in Rayleigh‐ and Love‐wave velocity are observed, including the first clearly measured Love‐wave 2θand 4θvariations. Inversion of averaged dispersion requires radial anisotropy in the shallow mantle (2‐3%) and the lower crust (4‐5%), with horizontal velocities (VSH) faster than vertical velocities (VSV). Azimuthal anisotropy is strong in the mantle, with 4.5–6% 2θvariation inVSVwith fast propagation parallel to the fossil‐spreading direction (FSD), and 2–2.5% 4θvariation inVSHwith a fast direction 45° from FSD. The relative behavior of 2θ, 4θ, and radial anisotropy in the mantle are consistent with ophiolite petrofabrics, linking outcrop and surface‐wave length scales.VSVremains fast parallel to FSD to ∼80 km depth where the direction changes, suggesting spreading‐dominated deformation at the ridge. The transition at ∼80 km perhaps marks the dehydration boundary and base of the lithosphere. Azimuthal anisotropy strength increases from the Moho to ∼30 km depth, consistent with flow models of passive upwelling at the ridge. Strong azimuthal anisotropy suggests extremely coherent olivine fabric. Weaker radial anisotropy implies slightly nonhorizontal fabric or the presence of alternative (so‐called E‐type) peridotite fabric. Presence of radial anisotropy in the crust suggests subhorizontal layering and/or shearing during crustal accretion.

     
    more » « less
  2. Abstract

    When continental rifting is accompanied by localized magmatism under extensional stress, the breakup duration can be short and the continent/ocean transition sharp, as mantle melts are thought to be efficient at heating and weakening the lithosphere. This mode of rifting has been invoked for the Eastern North American Margin (ENAM) based on the existing geophysical data. Here, we present results from multichannel seismic profiles from the ENAM Community Seismic Experiment offshore North Carolina, U.S. Our survey area encompasses both the East Coast Magnetic Anomaly (ECMA) and the Blake Spur Magnetic Anomaly (BSMA), which lies ~200‐km farther seaward. Our prestack depth‐migrated seismic images reveal major changes in the structure of the igneous crust across the BSMA. Between the ECMA and BSMA, we image a proto‐oceanic domain of rough, faulted, and thin igneous crust. The roughness of this oceanic crust is similar to modern ultraslow spreading environments which involve the continued presence of a pre‐existing lithospheric lid. Seaward of the BSMA the basement is smooth, and the crust is relatively thick, which is typical for Jurassic oceanic crust. Across the BSMA, we image a step up in basement and crustal root, which we interpret to represent complete lithospheric breakup and a transition to steady‐state seafloor spreading in agreement with coincident refraction results. Our results would also indicate low extension rates in the final stages of rifting that may have influenced the thermal structure of the lithosphere and could explain the delay for continental breakup. All of these observations show that although continental rifting between eastern North America and northwest Africa was assisted by magmatic activity, it did not lead to rapid localization of extensional strain as previously thought.

     
    more » « less
  3. SUMMARY

    We present a new, 3-D model of seismic velocity and anisotropy in the Pacific upper mantle, PAC13E. We invert a data set of single-station surface-wave phase-anomaly measurements sensitive only to Pacific structure for the full set of 13 anisotropic parameters that describe surface-wave anisotropy. Realistic scaling relationships for surface-wave azimuthal anisotropy are calculated from petrological information about the oceanic upper mantle and are used to help constrain the model. The strong age dependence in the oceanic velocities associated with plate cooling is also used as a priori information to constrain the model. We find strong radial anisotropy with vSH > vSV in the upper mantle; the signal peaks at depths of 100–160 km. We observe an age dependence in the depth of peak anisotropy and the thickness of the anisotropic layer, which both increase with seafloor age, but see little age dependence in the depth to the top of the radially anisotropic layer. We also find strong azimuthal anisotropy, which typically peaks in the asthenosphere. The azimuthal anisotropy at asthenospheric depths aligns better with absolute-plate-motion directions while the anisotropy within the lithosphere aligns better with palaeospreading directions. The relative strengths of radial and azimuthal anisotropy are consistent with A-type olivine fabric. Our findings are generally consistent with an explanation in which corner flow at the ridge leads to the development and freezing-in of anisotropy in the lithosphere, and shear between the lithosphere and underlying asthenosphere leads to anisotropy beneath the plate. We also observe large regions within the Pacific basin where the orientation of anisotropy and the absolute-plate-motion direction differ; this disagreement suggests the presence of shear in the asthenosphere that is not aligned with absolute-plate-motion directions. Azimuthal-anisotropy orientation rotates with depth; the depth of the maximum vertical gradient in the fast-axis orientation tends to be age dependent and agrees well with a thermally controlled lithosphere–asthenosphere boundary. We observe that azimuthal-anisotropy strength at shallow depths depends on half-spreading rate, with higher spreading rates associated with stronger anisotropy. Our model implies that corner flow is more efficient at aligning olivine to form lattice-preferred orientation anisotropy fabrics in the asthenosphere when the spreading rate at the ridge is higher.

     
    more » « less
  4. Abstract

    Little has been seismically imaged through the lithosphere and mantle at rifted margins across the continent‐ocean transition. A 2014–2015 community seismic experiment deployed broadband seismic instruments across the shoreline of the eastern North American rifted margin. Previous shear‐wave splitting along the margin shows several perplexing patterns of anisotropy, and by proxy, mantle flow. Neither margin parallel offshore fast azimuths nor null splitting on the continental coast obviously accord with absolute plate motion, paleo‐spreading, or rift‐induced anisotropy. Splitting measurements, however, offer no depth constraints on anisotropy. Additionally, mantle structure has not yet been imaged in detail across the continent‐ocean transition. We used teleseismicS,SKS,SKKS, andPKSsplitting and differential travel times recorded on ocean‐bottom seismometers, regional seismic networks, and EarthScope Transportable Array stations to conduct joint isotropic/anisotropic tomography across the margin. The velocity model reveals a transition from fast, thick, continental keel to low velocity, thinned lithosphere eastward. Imaged short wavelength velocity anomalies can be largely explained by edge‐driven convection or shear‐driven upwelling. We also find that layered anisotropy is prevalent across the margin. The anisotropic fast polarization is parallel to the margin within the asthenosphere. This suggests margin parallel flow beneath the plate. The lower oceanic lithosphere preserves paleo‐spreading‐parallel anisotropy, while the continental lithosphere has complex anisotropy reflecting several Wilson cycles. These results demonstrate the complex and active nature of a margin which is traditionally considered tectonically inactive.

     
    more » « less
  5. Abstract

    Seismic azimuthal anisotropy beneath Australia is investigated using splitting of the teleseismic PKS, SKKS, and SKS phases to delineate asthenospheric flow and lithospheric deformation beneath one of the oldest and fast‐moving continents on Earth. In total 511 pairs of high‐quality splitting parameters were observed at 116 seismic stations. Unlike other stable continental areas in Africa, East Asia, and North America, where spatially consistent splitting parameters dominate, the fast orientations and splitting times observed in Australia show a complex pattern, with a slightly smaller than normal average splitting time of 0.85 ± 0.33 s. On the North Australian Craton, the fast orientations are mostly N‐S, which is parallel to the absolute plate motion (APM) direction in the hotspot frame. Those observed in the South Australian Craton are mostly NE‐SW and E‐W, which are perpendicular to the maximum lithospheric horizontal shortening direction. In east Australia, the observed azimuthal anisotropy can be attributed to either APM induced simple shear or lithospheric fabric parallel to the strike of the orogenic belts. The observed spatial variations of the seismic azimuthal anisotropy, when combined with results from depth estimation utilizing the spatial coherency of the splitting parameters and seismic tomography studies, suggest that the azimuthal anisotropy in Australia can mostly be related to simple shear in the rheologically transition layer between the lithosphere and asthenosphere. Non‐APM parallel anisotropy is attributable to modulations of the mantle flow system by undulations of the bottom of the lithosphere, with a spatially variable degree of contribution from lithospheric fabric.

     
    more » « less