skip to main content

Title: Functional brain rewiring and altered cortical stability in ulcerative colitis
Abstract

Despite recent advances, there is still a major need to better understand the interactions between brain function and chronic gut inflammation and its clinical implications. Alterations in executive function have previously been identified in several chronic inflammatory conditions, including inflammatory bowel diseases. Inflammation-associated brain alterations can be captured by connectome analysis. Here, we used the resting-state fMRI data from 222 participants comprising three groups (ulcerative colitis (UC), irritable bowel syndrome (IBS), and healthy controls (HC),N = 74 each) to investigate the alterations in functional brain wiring and cortical stability in UC compared to the two control groups and identify possible correlations of these alterations with clinical parameters. Globally, UC participants showed increased functional connectivity and decreased modularity compared to IBS and HC groups. Regionally, UC showed decreased eigenvector centrality in the executive control network (UC < IBS < HC) and increased eigenvector centrality in the visual network (UC > IBS > HC). UC also showed increased connectivity in dorsal attention, somatomotor network, and visual networks, and these enhanced subnetwork connectivities were able to distinguish UC participants from HCs and IBS with high accuracy. Dynamic functional connectome analysis revealed that UC showed enhanced cortical stability in the medial prefrontal cortex (mPFC), which correlated with severe depression and anxiety-related measures. None more » of the observed brain changes were correlated with disease duration. Together, these findings are consistent with compromised functioning of networks involved in executive function and sensory integration in UC.

« less
Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10366957
Journal Name:
Molecular Psychiatry
Volume:
27
Issue:
3
Page Range or eLocation-ID:
p. 1792-1804
ISSN:
1359-4184
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Irritable bowel syndrome (IBS) is a common disorder of brain-gut interactions characterized by chronic abdominal pain, altered bowel movements, often accompanied by somatic and psychiatric comorbidities. We aimed to test the hypothesis that a baseline phenotype composed of multi-modal neuroimaging and clinical features predicts clinical improvement on the IBS Symptom Severity Scale (IBS-SSS) at 3 and 12 months without any targeted intervention. Female participants (N = 60) were identified as “improvers” (50-point decrease on IBS-SSS from baseline) or “non-improvers.” Data integration analysis using latent components (DIABLO) was applied to a training and test dataset to determine whether a limited number of sets of multiple correlated baseline’omics data types, including brain morphometry, anatomical connectivity, resting-state functional connectivity, and clinical features could accurately predict improver status. The derived predictive models predicted improvement status at 3-months and 12-months with 91% and 83% accuracy, respectively. Across both time points, non-improvers were classified as having greater correlated morphometry, anatomical connectivity and resting-state functional connectivity characteristics within salience and sensorimotor networks associated with greater pain unpleasantness, but lower default mode network integrity and connectivity. This suggests that non-improvers have a greater engagement of attentional systems to perseverate on painful visceral stimuli, predicting IBS exacerbation. The ability ofmore »baseline multimodal brain-clinical signatures to predict symptom trajectories may have implications in guiding integrative treatment in the age of precision medicine, such as treatments targeted at changing attentional systems such as mindfulness or cognitive behavioral therapy.

    « less
  2. Abstract

    Irritable bowel syndrome (IBS) is the most prevalent disorder of brain-gut interactions that affects between 5 and 10% of the general population worldwide. The current symptom criteria restrict the diagnosis to recurrent abdominal pain associated with altered bowel habits, but the majority of patients also report non-painful abdominal discomfort, associated psychiatric conditions (anxiety and depression), as well as other visceral and somatic pain-related symptoms. For decades, IBS was considered an intestinal motility disorder, and more recently a gut disorder. However, based on an extensive body of reported information about central, peripheral mechanisms and genetic factors involved in the pathophysiology of IBS symptoms, a comprehensive disease model of brain-gut-microbiome interactions has emerged, which can explain altered bowel habits, chronic abdominal pain, and psychiatric comorbidities. In this review, we will first describe novel insights into several key components of brain-gut microbiome interactions, starting with reported alterations in the gut connectome and enteric nervous system, and a list of distinct functional and structural brain signatures, and comparing them to the proposed brain alterations in anxiety disorders. We will then point out the emerging correlations between the brain networks with the genomic, gastrointestinal, immune, and gut microbiome-related parameters. We will incorporate this newmore »information into a systems-based disease model of IBS. Finally, we will discuss the implications of such a model for the improved understanding of the disorder and the development of more effective treatment approaches in the future.

    « less
  3. Background Digital health is poised to transform health care and redefine personalized health. As Internet and mobile phone usage increases, as technology develops new ways to collect data, and as clinical guidelines change, all areas of medicine face new challenges and opportunities. Inflammatory bowel disease (IBD) is one of many chronic diseases that may benefit from these advances in digital health. This review intends to lay a foundation for clinicians and technologists to understand future directions and opportunities together. Objective This review covers mobile health apps that have been used in IBD, how they have fit into a clinical care framework, and the challenges that clinicians and technologists face in approaching future opportunities. Methods We searched PubMed, Scopus, and ClinicalTrials.gov to identify mobile apps that have been studied and were published in the literature from January 1, 2010, to April 19, 2019. The search terms were (“mobile health” OR “eHealth” OR “digital health” OR “smart phone” OR “mobile app” OR “mobile applications” OR “mHealth” OR “smartphones”) AND (“IBD” OR “Inflammatory bowel disease” OR “Crohn's Disease” (CD) OR “Ulcerative Colitis” (UC) OR “UC” OR “CD”), followed by further analysis of citations from the results. We searched the Apple iTunes app storemore »to identify a limited selection of commercial apps to include for discussion. Results A total of 68 articles met the inclusion criteria. A total of 11 digital health apps were identified in the literature and 4 commercial apps were selected to be described in this review. While most apps have some educational component, the majority of apps focus on eliciting patient-reported outcomes related to disease activity, and a few are for treatment management. Significant benefits have been seen in trials relating to education, quality of life, quality of care, treatment adherence, and medication management. No studies have reported a negative impact on any of the above. There are mixed results in terms of effects on office visits and follow-up. Conclusions While studies have shown that digital health can fit into, complement, and improve the standard clinical care of patients with IBD, there is a need for further validation and improvement, from both a clinical and patient perspective. Exploring new research methods, like microrandomized trials, may allow for more implementation of technology and rapid advancement of knowledge. New technologies that can objectively and seamlessly capture remote data, as well as complement the clinical shift from symptom-based to inflammation-based care, will help the clinical and health technology communities to understand the full potential of digital health in the care of IBD and other chronic illnesses.« less
  4. Chronic inflammation associated with inflammatory bowel disease (IBD) results in increased oxidative stress that damages the colonic microenvironment. A low level of serum bilirubin, an endogenous antioxidant, has been associated with increased risk for Crohn's disease (CD), but no study has tested another common IBD ulcerative colitis (UC). Bilirubin is metabolized in the liver by uridine glucuronosyltransferase 1A1 (UGT1A1) exclusively. Genetic variants cause functional changes in UGT1A1 which result in hyperbilirubinemia, which can be toxic to tissues if untreated and results in a characteristic jaundiced appearance. Approximately 10% of the Caucasian population is homozygous for the microsatellite polymorphism UGT1A1*28, which results in increased total serum bilirubin levels due to reduced transcriptional efficiency of UGT1A1 and an overall 70% reduction in UGT1A1 enzymatic activity. The aim of this study was to examine whether bilirubin levels are associated with the risk for ulcerative colitis (UC). Using the Informatics for Integrating Biology and the Bedside (i2b2), a large case-control population was identified from a single tertiary care center, Penn State Hershey Medical Center (PSU). Similarly, a validation cohort was identified at Virginia Commonwealth University Medical Center. Logistic regression analysis was performed to determine the risk of developing UC with lower concentrations of serummore »bilirubin. From the PSU cohort, a subset of terminal ileum tissue was obtained at the time of surgical resection to analyze UGT1A1 gene expression (which encodes the enzyme responsible for bilirubin metabolism). Similar to CD patients, UC patients also demonstrated reduced levels of total serum bilirubin. Upon segregating serum bilirubin levels into quartiles, risk of UC increased with reduced concentrations of serum bilirubin. These results were confirmed in our validation cohort. UGT1A1 gene expression was up-regulated in the terminal ileum of a subset of UC patients. Lower levels of the antioxidant bilirubin may reduce the capability of UC patients to remove reactive oxygen species leading to an increase in intestinal injury. One potential explanation for these lower bilirubin levels may be up-regulation of UGT1A1 gene expression, which encodes the only enzyme involved in conjugating bilirubin. Therapeutics that reduce oxidative stress may be beneficial for these patients.« less
  5. Background: Human brain structural connectivity is an important imaging quantitative trait for brain development and aging. Mapping the network connectivity to the phenotypic variation provides fundamental insights in understanding the relationship between detailed brain topological architecture, function, and dysfunction. However, the underlying neurobiological mechanism from gene to brain connectome, and to phenotypic outcomes, and whether this mechanism changes over time, remain unclear. Methods: This study analyzes diffusion-weighted imaging data from two age-specific neuroimaging cohorts, extracts structural connectome topological network measures, performs genome-wide association studies of the measures, and examines the causality of genetic influences on phenotypic outcomes mediated via connectivity measures. Results: Our empirical study has yielded several significant findings: 1) It identified genetic makeup underlying structural connectivity changes in the human brain connectome for both age groups. Specifically, it revealed a novel association between the minor allele (G) of rs7937515 and the decreased network segregation measures of the left middle temporal gyrus across young and elderly adults, indicating a consistent genetic effect on brain connectivity across the lifespan. 2) It revealed rs7937515 as a genetic marker for body mass index in young adults but not in elderly adults. 3) It discovered brain network segregation alterations as a potential neuroimagingmore »biomarker for obesity. 4) It demonstrated the hemispheric asymmetry of structural network organization in genetic association analyses and outcome-relevant studies. Discussion: These imaging genetic findings underlying brain connectome warrant further investigation for exploring their potential influences on brain-related complex diseases, given the significant involvement of altered connectivity in neurological, psychiatric and physical disorders.« less