skip to main content


Title: Seismic Diffusivity and the Influence of Heterogeneity on Injection‐Induced Seismicity
Abstract

The spatiotemporal patterns of injection‐induced seismicity (IIS) are commonly interpreted with the concept of a triggering front, which propagates in a diffusion‐like manner with an associated diffusivity parameter. Here, we refer to this diffusivity as the “seismic diffusivity.” Several previous studies implicitly assume that seismic diffusivity is equivalent to the effective hydraulic diffusivity of the subsurface, which describes the behavior of the mean pressure field in heterogeneous porous media. Seismicity‐based approaches for hydraulic characterization or simulations of IIS using domains of homogeneous equivalent porous media are implicitly based on this assumed equivalence. However, seismicity is expected to propagate with the threshold triggering pressure, and thus not be controlled by the evolution of the mean pressure field. We present numerical simulations of fluid injection to compare the seismic and effective hydraulic diffusivities in heterogeneous formations (including fractured rock). The numerical model combines uncoupled, linear pressure diffusion with the Mohr‐Coulomb failure criterion to simulate IIS. We demonstrate that connected pathways of relatively high hydraulic diffusivity in heterogeneous media (particularly in fractured rock domains) allow the threshold triggering pressure to propagate more rapidly than predicted by the effective hydraulic diffusivity. As a result, the seismic diffusivity is greater than the effective hydraulic diffusivity in heterogeneous porous media, possibly by an order of magnitude or more. Additionally, we present a case study of IIS near Soultz‐sous‐Forêts where seismic diffusivity is found to be at least one order of magnitude larger than the effective hydraulic diffusivity.

 
more » « less
NSF-PAR ID:
10366966
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
6
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydraulic fracturing arises as a method to enhance oil and gas production, and also as a way to recover geothermal energy. It is, therefore, essential to understand how injecting a fluid inside a rock reservoir will affect its surroundings. Hydraulic fracturing processes can be strongly affected by the interaction between two mechanisms: the elastic effects caused by the hydraulic pressure applied inside fractures and the poro-mechanical effects caused by the fluid infiltration inside the porous media (i.e. fluid diffusivity); this, in turn, is affected by the injection rate used. The interaction between poro-elastic mechanisms, particularly the effect of the fluid diffusivity, in the hydraulic fracturing processes is not well-understood and is investigated in this paper. This study aims to experimentally and theoretically comprehend the effects of the injection rate on crack propagation and on pore pressures, when flaws pre-fabricated in prismatic gypsum specimens are hydraulically pressurized. In order to accomplish this, laboratory experiments were performed using two injection rates (2 and 20 ml/min), applied by an apparatus consisting of a pressure enclosure with an impermeable membrane in both faces of the specimen, which allowed one to observe the growth of a fluid front from the pre-fabricated flaws to the unsaturated porous media (i.e. rock), before fracturing took place. It was observed that the fracturing pressures and patterns are injection-rate-dependent. This was interpreted to be caused by the different pore pressures that developed in the rock matrix, which resulted from the significantly distinct fluid fronts observed for the two injection rates tested. 
    more » « less
  2. Abstract

    Fractured sedimentary bedrock aquifers represent complex flow systems that may contain fast, fracture‐dominated flow paths and slower, porous media‐dominated flow paths. Thus, characterizing the dynamics of flow and transport through these aquifers remains a fundamental hydrogeologic challenge. Recent studies have demonstrated the utility of a novel hydraulic testing approach, oscillatory flow testing, in field settings to characterize single bedrock fractures embedded in low‐porosity sedimentary bedrock. These studies employed an idealized analytical model assuming Darcian flow through a nondeforming, constant‐aperture, nonleaky fracture for data interpretation, and reported period‐dependent effective fracture flow parameters. Here, we present the application of oscillatory flow testing across a range of frequencies and inter‐well spacings on a fracture embedded in poorly cemented sedimentary bedrock with considerable primary porosity at the Field Site for Research in Fractured Sedimentary Rock. Consistent with previous studies, we show an apparent period‐dependence in returned flow parameters, with hydraulic diffusivity decreasing and storativity increasing with increasing oscillation period, when assuming an idealized fracture conceptual model. We present simple analyses that examine non‐Darcian flow and borehole storage effects as potential test design artifacts and a simple analytical model that examines fluid leakage to the surrounding host rock as a potential hydraulic mechanism that might contribute to the period‐dependent flow parameters. These analyses represent a range of conceptual assumptions about fracture behavior during hydraulic testing, none of which account for the measured responses during oscillatory flow testing, leading us to argue that other hydraulic processes (e.g., aperture heterogeneity and/or fracture hydromechanics) are necessary to accurately represent pressure propagation through fractured sedimentary bedrock.

     
    more » « less
  3. Abstract

    Fluid injection into rock formations can either produce complex branched hydraulic fractures, create simple planar fractures, or be dominated by porous diffusion. Currently, the optimum injection parameters to create branched fractures are unknown. We conducted repeatable hydraulic fracturing experiments using analog‐rock samples with controlled heterogeneity to quantify the fluid parameters that promote fracture branching. A large range of injection rates and fluid viscosities were used to investigate their effects on induced fracture patterns. Paired with a simple analytical model, our results identify the threshold at which fracture transitions from an isolated planar crack to branched cracks when closed natural fractures exist. These results demonstrate that this transition can be controlled by injection rate and fluid viscosity. In relation to the field practices, the present model predicts slickwater and lower viscosity fluid injections promote fracture branching, with the Marcellus shale used as an example.

     
    more » « less
  4. Abstract

    Fractured bedrock aquifers, especially deep aquifers, represent increasingly common targets for waste storage and alternative energy development, necessitating detailed quantitative descriptions of fracture hydraulic properties, geometry, and connectivity. Yet, multi‐scale characterization of the physical properties that govern fluid flow through and storage in fractured bedrock remains a fundamental hydrogeologic challenge. Oscillatory hydraulic testing, a novel hydraulic characterization technique, has been showing promise in field experiments to characterize the effective hydraulic properties of bedrock fractures. To date, these characterization efforts utilize simplified diffusive analytical models that conceptualize a non‐deforming, parallel‐plate fracture embedded within impermeable host rock, and have found that the returned fracture hydraulic parameter estimates exhibit an apparent period‐dependence. We conduct synthetic experiments using three different numerical models to examine proposed mechanisms that might contribute to the observed period‐dependence including heterogeneous flow and storage within the fracture (i.e., aperture heterogeneity), fracture‐host rock fluid exchange, and fracture hydromechanics. This work represents the first systematic analysis that seeks to understand the process(es) occurring within a bedrock fracture that might be contributing to this apparent period‐dependence. Our analysis demonstrates that all investigated mechanisms generate period‐dependent effective hydraulic parameter estimates, each with their own potentially diagnostic trends; however, fracture hydromechanics is the only explored mechanism that consistently reproduces period‐dependent trends in parameter estimates that are consistent with existing field investigations. These results highlight the need to develop more complex numerical modeling approaches that account for this hydromechanical behavior when characterizing fractured bedrock aquifers.

     
    more » « less
  5. Abstract

    Tiltmeters have the potential to resolve ground deformation due to changes in hydraulic head induced by conduit pressurization. Conduit pressure variations cause groundwater to be stored or released from storage within the surrounding rock matrix. We modeled this process and infer whether the resulting deformation is measurable with tiltmeters and what behavior to expect by fully coupling porous media flow and solid mechanics in a poroelastic, 2D finite element model. Parameter sets globally representative of Paleozoic, Mesozoic, and Cenozoic confined and unconfined aquifers are considered. Our analysis focuses on the impact of the parameterization on pore pressure, vertical displacement, and tilt. We find that the spatial distribution of the poroelastic signal depends on the hydraulic diffusivity, and its magnitude depends on the mechanical and coupling parameters. Additional analysis of the impacts of conduit radius and depth suggests that tilt polarity could be an indicator of conduit location and relative conduit size. We calibrated the model to data observations acquired at the Santa Fe River Sink‐Rise system in north‐central Florida, US. We find that an overlying clay‐rich layer may act to partially confine the aquifer. Although the observed tilt signal is present in radial and transverse components and polarity reversals occur, we were able to recover the magnitude and general trend of the tilt response.

     
    more » « less