skip to main content

Title: The Role of Seasonality and the ENSO Mode in Central and East Pacific ENSO Growth and Evolution

A cyclostationary linear inverse model (CSLIM) is used to investigate the seasonal growth of tropical Pacific Ocean El Niño–Southern Oscillation (ENSO) events with canonical, central Pacific (CP), or eastern Pacific (EP) sea surface temperature (SST) characteristics. Analysis shows that all types of ENSO events experience maximum growth toward final states occurring in November and December. ENSO events with EP characteristics also experience growth into May and June, but CP events do not. A single dominant “ENSO mode,” growing from an equatorial heat content anomaly into a characteristic ENSO-type SST pattern in about 9 months (consistent with the delayed/recharge oscillator model of ENSO), is essential for the predictable development of all ENSO events. Notably, its seasonality is responsible for the late-calendar-year maximum in ENSO amplification. However, this ENSO mode alone does not capture the observed growth and evolution of diverse ENSO events, which additionally involve the seasonal evolution of other nonorthogonal Floquet modes. EP event growth occurs when the ENSO mode is initially “covered up” in combination with other Floquet modes. The ENSO mode’s slow seasonal evolution allows it to emerge while the other modes rapidly evolve and/or decay, leading to strongly amplifying and more predictable EP events. CP events develop when the initial state has a substantial contribution from Floquet modes with meridional mode–like SST structures. Thus, while nearly all ENSO events involve the seasonally varying ENSO-mode dynamics, the diversity and predictability of ENSO events cannot be understood without identifying contributions from the remaining Floquet modes.

Significance Statement

The purpose of this study is to identify structures that lead to seasonal growth of diverse types of El Niño–Southern Oscillation (ENSO) events. An important contribution from this study is that it uses an observationally constrained, empirically derived seasonal model. We find that processes affecting the evolution of diverse ENSO events are strongly seasonally dependent. ENSO events with eastern equatorial Pacific sea surface temperature (SST) characteristics are closely related to a single “ENSO mode” that resembles theoretical models of ENSO variability. ENSO events that have central equatorial Pacific SST characteristics include contributions from additional “meridional mode” structures that evolve via different physical processes. These findings are an important step in evaluating the seasonal predictability of ENSO diversity.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
p. 3195-3209
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.

    more » « less
  2. Abstract

    The relationship between the equatorial Pacific warm water volume (WWV) and El Niño–Southern Oscillation (ENSO) sea surface temperature (SST) has varied considerably on decadal timescales. These changes are strongly related to the occurrence frequency of central Pacific (CP) ENSO events. While both eastern Pacific (EP) and CP ENSO events show clear signatures of WWV recharge/discharge, their phase‐lag relationships between WWV and Niño3.4 SST are different. The WWV usually leads the Niño3.4 SST by two to three seasons during EP ENSO, while the lead time is reduced to one season during CP ENSO. The different phase‐lag relationships can be explained by distinct periodicities of the two ENSO types. Hence, ENSO regime changes associated with decadal predominance of either EP or CP ENSO events can give rise to decadal variations in the statistical WWV‐ENSO SST relationship. We emphasize the importance of identifying these different ENSO types and potentially different ENSO regimes to assess ENSO predictability.

    more » « less
  3. The Pacific–North American (PNA) teleconnection pattern is one of the prominent atmospheric circulation modes in the extratropical Northern Hemisphere, and its seasonal to interannual predictability is suggested to originate from El Niño–Southern Oscillation (ENSO). Intriguingly, the PNA teleconnection pattern exhibits variance at near-annual frequencies, which is related to a rapid phase reversal of the PNA pattern during ENSO years, whereas the ENSO sea surface temperature (SST) anomalies in the tropical Pacific are evolving much slower in time. This distinct seasonal feature of the PNA pattern can be explained by an amplitude modulation of the interannual ENSO signal by the annual cycle (i.e., the ENSO combination mode). The ENSO-related seasonal phase transition of the PNA pattern is reproduced well in an atmospheric general circulation model when both the background SST annual cycle and ENSO SST anomalies are prescribed. In contrast, this characteristic seasonal evolution of the PNA pattern is absent when the tropical Pacific background SST annual cycle is not considered in the modeling experiments. The background SST annual cycle in the tropical Pacific modulates the ENSO-associated tropical Pacific convection response, leading to a rapid enhancement of convection anomalies in winter. The enhanced convection results in a fast establishment of the large-scale PNA teleconnection during ENSO years. The dynamics of this ENSO–annual cycle interaction fills an important gap in our understanding of the seasonally modulated PNA teleconnection pattern during ENSO years. 
    more » « less
  4. The El Niño Southern Oscillation (ENSO) phenomenon, manifested by the great swings of large-scale sea surface temperature (SST) anomalies over the equatorial central to eastern Pacific oceans, is a major source of interannual global shifts in climate patterns and weather activities. ENSO’s SST anomalies exhibit remarkable spatiotemporal pattern diversity (STPD), with their spatial pattern diversity dominated by Central Pacific (CP) and Eastern Pacific (EP) El Niño events and their temporal diversity marked by different timescales and intermittency in these types of events. By affecting various Earth system components, ENSO and its STPD yield significant environmental, ecological, economic, and societal impacts over the globe. The basic dynamics of ENSO as a canonical oscillator generated by coupled ocean–atmosphere interactions in the tropical Pacific have been largely understood. A minimal simple conceptual model such as the recharge oscillator paradigm provides means for quantifying the linear and nonlinear seasonally modulated growth rate and frequency together with ENSO’s state-dependent noise forcing for understanding ENSO’s amplitude and periodicity, boreal winter-time phase locking, and warm/cold phase asymmetry. However, the dynamical mechanisms explaining the key features of ENSO STPD associated with CP and EP events remain to be better understood. This article provides a summary of the recent active research on the dynamics of ENSO STPD together with discussions on challenges and outlooks for theoretical, diagnostic, and numerical modeling approaches to advance our understanding and modeling of ENSO, its STPD, and their broad impacts. 
    more » « less
  5. Abstract

    In this study, we investigate how a single leading linear El Niño–Southern Oscillation (ENSO) mode, as studied in Part I, leads to the irregular coexistence of central Pacific (CP) and eastern Pacific (EP) ENSO, a phenomenon known as ENSO spatiotemporal diversity. This diversity is fundamentally generated by deterministic nonlinear pathways to chaos via the period-doubling route and, more prevailingly, the subharmonic resonance route with the presence of a seasonally varying basic state. When residing in the weakly nonlinear regime, the coupled system sustains a weak periodic oscillation with a mixed CP/EP pattern as captured by the linear ENSO mode. With a stronger nonlinearity effect, the ENSO behavior experiences a period-doubling bifurcation. The single ENSO orbit splits into coexisting CP-like and EP-like ENSO orbits. A sequence of period-doubling bifurcation results in an aperiodic oscillation featuring irregular CP and EP ENSO occurrences. The overlapping of subharmonic resonances between ENSO and the seasonal cycle allows this ENSO irregularity and diversity to be more readily excited. In the strongly nonlinear regime, the coupled system is dominated by regular EP ENSO. The deterministic ENSO spatiotemporal diversity is thus confined to a relatively narrow range corresponding to a moderately unstable ENSO mode. Stochastic forcing broadens this range and allows ENSO diversity to occur when the ENSO mode is weakly subcritical. A close relationship among a weakened mean zonal temperature gradient, stronger ENSO activity, and more (fewer) occurrences of EP (CP) ENSO is noted, indicating that ENSO–mean state interaction may yield ENSO regime modulations on the multidecadal time scale.

    more » « less