Despite recent advances, there is still a major need to better understand the interactions between brain function and chronic gut inflammation and its clinical implications. Alterations in executive function have previously been identified in several chronic inflammatory conditions, including inflammatory bowel diseases. Inflammation-associated brain alterations can be captured by connectome analysis. Here, we used the resting-state fMRI data from 222 participants comprising three groups (ulcerative colitis (UC), irritable bowel syndrome (IBS), and healthy controls (HC),
Irritable bowel syndrome (IBS) is a common disorder of brain-gut interactions characterized by chronic abdominal pain, altered bowel movements, often accompanied by somatic and psychiatric comorbidities. We aimed to test the hypothesis that a baseline phenotype composed of multi-modal neuroimaging and clinical features predicts clinical improvement on the IBS Symptom Severity Scale (IBS-SSS) at 3 and 12 months without any targeted intervention. Female participants (
- Publication Date:
- NSF-PAR ID:
- 10367002
- Journal Name:
- Molecular Psychiatry
- Volume:
- 27
- Issue:
- 3
- Page Range or eLocation-ID:
- p. 1774-1791
- ISSN:
- 1359-4184
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract N = 74 each) to investigate the alterations in functional brain wiring and cortical stability in UC compared to the two control groups and identify possible correlations of these alterations with clinical parameters. Globally, UC participants showed increased functional connectivity and decreased modularity compared to IBS and HC groups. Regionally, UC showed decreased eigenvector centrality in the executive control network (UC < IBS < HC) and increased eigenvector centrality in the visual network (UC > IBS > HC). UC also showed increased connectivity in dorsal attention, somatomotor network, and visual networks, and these enhanced subnetwork connectivities were able to distinguish UC participants from HCs and IBS with high accuracy. Dynamic functional connectome analysis revealed that UC showed enhanced cortical stability in the medial prefrontal cortex (mPFC), which correlated with severe depression and anxiety-related measures. Nonemore » -
Abstract Irritable bowel syndrome (IBS) is the most prevalent disorder of brain-gut interactions that affects between 5 and 10% of the general population worldwide. The current symptom criteria restrict the diagnosis to recurrent abdominal pain associated with altered bowel habits, but the majority of patients also report non-painful abdominal discomfort, associated psychiatric conditions (anxiety and depression), as well as other visceral and somatic pain-related symptoms. For decades, IBS was considered an intestinal motility disorder, and more recently a gut disorder. However, based on an extensive body of reported information about central, peripheral mechanisms and genetic factors involved in the pathophysiology of IBS symptoms, a comprehensive disease model of brain-gut-microbiome interactions has emerged, which can explain altered bowel habits, chronic abdominal pain, and psychiatric comorbidities. In this review, we will first describe novel insights into several key components of brain-gut microbiome interactions, starting with reported alterations in the gut connectome and enteric nervous system, and a list of distinct functional and structural brain signatures, and comparing them to the proposed brain alterations in anxiety disorders. We will then point out the emerging correlations between the brain networks with the genomic, gastrointestinal, immune, and gut microbiome-related parameters. We will incorporate this newmore »
-
Introduction: Back pain is one of the most common causes of pain in the United States. Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain (CBP). However, SCS decreases pain in only 58% of patients and relies on self-reported pain scores as outcome measures. An SCS trial is temporarily implanted for seven days and helps to determine if a permanent SCS is needed. Patients that have a >50% reduction in pain from the trial stimulator makes them eligible for permanent implantation. However, self-reported measures reveal little on how mechanisms in the brain are altered. Other measurements of pain intensity, onset, medication, disabilities, depression, and anxiety have been used with machine learning to predict outcomes with accuracies <70%. We aim to predict long-term SCS responders at 6-months using baseline resting EEG and machine learning. Materials and Methods: We obtained 10-minutes of resting electroencephalography (EEG) and pain questionnaires from nine participants with CBP at two time points: 1) pre-trial baseline. 2) Six months after SCS permanent implant surgery. Subjects were designated as high or moderate responders based on the amount of pain relief provided by the long-term (post six months) SCS, and pain scored on a scale ofmore »
-
ABSTRACT IMPACT: Understanding how spinal cord stimulation works and who it works best for will improve clinical trial efficacy and prevent unnecessary surgeries. OBJECTIVES/GOALS: Spinal cord stimulation (SCS) is an intervention for chronic low back pain where standard interventions fail to provide relief. However, estimates suggest only 58% of patients achieve at least 50% reduction in their pain. There is no non-invasive method for predicting relief provided by SCS. We hypothesize neural activity in the brain can fill this gap. METHODS/STUDY POPULATION: We tested SCS patients at 3 times points: baseline (pre-surgery), at day 7 during the trial period (post-trial), and 6 months after a permanent system had been implanted. At each time point participants completed 10 minutes of eyes closed, resting electroencephalography (EEG) and self-reported their pain. EEG was collected with the ActiveTwo system and a 128-electrode cap. Patients were grouped based on the percentage change of their pain from baseline to the final visit using a median split (super responders > average responders). Spectral density powerbands were extracted from resting EEG to use as input features for machine learning analyses. We used support vector machines to predict response to SCS. RESULTS/ANTICIPATED RESULTS: Baseline and post-trial EEG data predictedmore »
-
Postmenopausal women often suffer from vaginal symptoms associated with atrophic vaginitis. Additionally, gynecologic cancer survivors may live for decades with additional, clinically significant, persistent vaginal toxicities caused by cancer therapies, including pain, dyspareunia, and sexual dysfunction. The vaginal microbiome (VM) has been previously linked with vaginal symptoms related to menopause ( i.e. dryness). Our previous work showed that gynecologic cancer patients exhibit distinct VM profiles from healthy women, with low abundance of lactobacilli and prevalence of multiple opportunistic pathogenic bacteria. Here we explore the association between the dynamics and structure of the vaginal microbiome with the manifestation and persistence of vaginal symptoms, during one year after completion of cancer therapies, while controlling for clinical and sociodemographic factors. We compared cross-sectionally the vaginal microbiome in 134 women, 64 gynecologic patients treated with radiotherapy and 68 healthy controls, and we longitudinally followed a subset of 52 women quarterly (4 times in a year: pre-radiation therapy, 2, 6 and 12 months post-therapy). Differences among the VM profiles of cancer and healthy women were more pronounced with the progression of time. Cancer patients had higher diversity VMs and a variety of vaginal community types (CTs) that are not dominated by Lactobacilli , with extensivemore »