skip to main content

Title: Insight Into the Early Exhumation of the Cycladic Blueschist Unit, Syros, Greece: Combined Application of Zoned Garnet Geochronology, Thermodynamic Modeling, and Quartz Elastic Barometry

Constraining conditions and mechanisms of the early stages of exhumation from within subduction zones is challenging. Although pressure, temperature, and age can be inferred from the exhumed rock record, it is generally difficult to derive each of these parameters from any single rock, thus demanding assumptions that diverse data from multiple samples can be safely combined into a single pressure‐temperature‐time (PTt) path that might then be used to infer tectonic context and mechanisms of exhumation. Here, we present new thermobarometric and geochronologic information preserved in a single sample from Syros, Greece, to deduce the conditions and rates of the earliest phase of exhumation as a part of the well‐preserved high‐pressure metamorphic rocks of the Cycladic Blueschist Unit (CBU). The sample studied here is a garnet‐bearing, quartz‐mica schist that records two distinct metamorphic events. Results from thermodynamic models and quartz‐in‐garnet elastic geobarometry show that metamorphic garnet cores formed asPTconditions evolved from ∼485°C and 2.2 GPa to 530°C and 2.0 GPa, and that garnet rims formed as conditions evolved from ∼560°C and 2.1 GPa to ∼550°C and 1.6 GPa. Sm‐Nd geochronology on garnet cores and rims yields ages of 45.3 ± 1.0 and 40.5 ± 1.9 Ma, respectively, thus indicating a 4.8 ± 2.1 Myr growth span. Given the decompression path calculated based on garnet core and rimPTestimates, we conclude that the distinct phases of garnet growth preserve evidence of the initial exhumation of portions of the CBU.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Retrograde metamorphic rocks provide key insights into the pressure–temperature (P–T) evolution of exhumed material, and resultant P–T constraints have direct implications for the mechanical and thermal conditions of subduction interfaces. However, constraining P–T conditions of retrograde metamorphic rocks has historically been challenging and has resulted in debate about the conditions experienced by these rocks. In this work, we combine elastic thermobarometry with oxygen isotope thermometry to quantify the P–T evolution of retrograde metamorphic rocks of the Cycladic Blueschist Unit (CBU), an exhumed subduction complex exposed on Syros, Greece. We employ quartz-in-garnet and quartz-in-epidote barometry to constrain pressures of garnet and epidote growth near peak subduction conditions and during exhumation, respectively. Oxygen isotope thermometry of quartz and calcite within boudin necks was used to estimate temperatures during exhumation and to refine pressure estimates. Three distinct pressure groups are related to different metamorphic events and fabrics: high-pressure garnet growth at ∼1.4–1.7 GPa between 500–550 ∘C, retrograde epidote growth at ∼1.3–1.5 GPa between 400–500 ∘C, and a second stage of retrograde epidote growth at ∼1.0 GPa and 400 ∘C. These results are consistent with different stages of deformation inferred from field and microstructural observations, recording prograde subduction to blueschist–eclogite facies and subsequent retrogression under blueschist–greenschist facies conditions. Our new results indicate that the CBU experienced cooling during decompression after reaching maximum high-pressure–low-temperature conditions. These P–T conditions and structural observations are consistent with exhumation and cooling within the subduction channel in proximity to the refrigerating subducting plate, prior to Miocene core-complex formation. This study also illustrates the potential of using elastic thermobarometry in combination with structural and microstructural constraints, to better understand the P–T-deformation conditions of retrograde mineral growth in high-pressure–low-temperature (HP/LT) metamorphic terranes. 
    more » « less
  2. Abstract Garnet–kyanite–staurolite assemblages with large, late porphyroblasts of amphibole form garbenschists in Ordovician volcaniclastic rocks lying immediately south of the Pearya terrane on northernmost Ellesmere Island, Canada. The schist, which together with carbonate olistoliths makes up the Petersen Bay Assemblage (PBA), displays a series of parallel isograds that mark an increase in metamorphic grade over a distance of 10 km towards the contact with Pearya; however, a steep, brittle Cenozoic strike-slip fault with an unknown amount displacement disturbs the earlier accretionary relationship. The late amphibole growth, probably due to fluid ingress, is clear evidence of disequilibrium conditions in the garbenschist. In order to recover the P–T history of the schists, we construct isochemical phase equilibrium models for a nearby garnet–mica schist that escaped the fluid event and compare the results to quartz inclusion in garnet (QuiG) barometry for a garbenschist and the metapelitic garnet schist. Quartz inclusions are confined to garnet cores and the QuiG results, combined with Ti-in-biotite and garnet–biotite thermometry, delineate a prograde path from 480 to 600°C and 0.7 to 0.9 GPa. This path agrees with growth zoning in garnet deduced from X-ray maps of the spessartine component in garnet. The peak conditions obtained from pseudosection modelling using effective bulk composition and the intersection of garnet rim with matrix biotite and white mica isopleths in the metapelite are 665°C at ≤0.85 GPa. Three generations of monazite (I, II and III) were identified by textural characterization, geochemical composition (REE and Y concentrations) and U–Pb ages measured by ion microprobe. Monazite I occurs in the matrix and as inclusions in garnet rims and grew at peak P–T conditions at 397 ± 2 Ma (2σ) from the breakdown of allanite. Monazite II forms overgrowths on matrix Monazite I grains that are oriented parallel to the main schistosity and yield ages of 385 ± 2 Ma. Monazite III, found only in the garbenschist, is 374 ± 6 Ma, which is interpreted as the time of amphibole growth during fluid infiltration at lower temperature and pressure on a clockwise P–T path that remained in the kyanite stability field. These results point to a relatively short (≈12 Myr) Barrovian metamorphic event that affected the schists of the PBA. An obvious heat source is lacking in the adjacent Pearya terrane, but we speculate it was large Devonian plutons—similar to the 390 ± 10 Ma Cape Woods granite located 40 km across strike from the fault—that have been excised by strike-slip. Arc fragments that are correlative to the PBA are low grade; they never saw the heat and were not directly involved in Pearya accretion. 
    more » « less
  3. Abstract

    High‐pressure rocks from the island of Ios in the Greek Cyclades were examined to resolve the P–T conditions reached during subduction of the two distinct lithotectonic units that are separated by the South Cycladic Shear Zone (SCSZ)—the footwall complex composed of Hercynian basement gneisses, schists and amphibolites, and the hangingwall complex composed of blueschists and eclogites. A combination of elastic tensor quartz inclusion in garnet (QuiG) barometry and Zr‐in‐rutile (ZiR) trace element thermometry was used to constrain minimum garnet growth conditions. Garnet from the hangingwall (blueschist) unit record formation pressures that range from 1.5 to 1.9 GPa and garnet from the footwall basement complex record garnet formation pressures of 1.65–2.05 GPa. ZiR thermometry on rutile inclusions within garnet establishes the minimum temperature for garnet formation to be ~480–500°C. That is, there is no evidence in the QuiG and ZiR results that the rocks of the blueschist hangingwall and basement experienced different metamorphic histories during subduction. This is the first reported observation of blueschist facies metamorphism in the Hercynian basement complex. A model is proposed in which initial subduction occurred along a relatively shallow P–T trajectory of ~11°C/km and then transitioned to a steeper, nearly isothermal trajectory at a depth of ~45 km reaching similar peak metamorphic conditions of ~500–525°C at 2.0 GPa for all samples. Such a change in the subduction path could be accomplished by either an increase in the rate of subduction or an increase in the angle of the subduction zone. The present juxtaposition of samples with contrasting mineral assemblages and garnet growth histories is interpreted to have arisen from differences in bulk compositions and variations in the preservation of high‐pressure prograde mineral assemblages during exhumation. The existence of similar P–T conditions and prograde paths in the two units does not require that the rocks were all metamorphosed at the same time and that the SCSZ experienced little movement. Rather, it is suggested that the two units experienced prograde and peak metamorphism at different times and were subsequently juxtaposed along the SCSZ.

    more » « less
  4. Abstract

    We present a comprehensive petrological and geochronological study of a single granulite sample from the lithosphere‐scale Beraketa shear zone in southern Madagascar to constrain the orogenic history of Gondwana assembly in this region. The studied sample provides a panoply of data constraining the prograde, retrograde, and late metasomatic history of the region via the application of Ti‐in‐quartz, Ti‐in‐zircon, Zr‐in‐rutile, and Al‐in‐orthopyroxene thermobarometry; phase‐equilibrium modelling; U–Pb monazite, zircon, and rutile petrochronology; and trace element diffusion chronometry in rutile. Our results reveal five stages of metamorphism along a narrow clockwisePTpath that may have begun as early as 620–600 Ma and certainly by 580–560 Ma, based on the oldest concordant zircon dates. The rock was heated to >725°C at less than 7.5 kbar (Stage 1) before burial to ~8 kbar (Stage 2). Byc. 540 Ma, the rock had heated to ~970°C at ~9 kbar, and lost approximately 12% melt (Stage 3), before decompressing and cooling to the solidus at ~860°C and 6.5 kbar within 10 Ma (Stage 4). The vast majority of monazite and zircon dates record Stage 4 cooling and exhumation. Monazite and zircon rim dates as young asc. 510 Ma record subsolidus cooling (Stage 5) and associated symplectite formation around garnet. U–Pb rutile dates record partial resetting atc. 460 Ma; Zr‐ and Nb‐in‐rutile diffusion chronometry link these dates to a metasomatic event that lasted <1 Ma at ~600°C. In addition to chronicling a near‐complete cycle of metamorphism in southern Madagascar, this study constrains the rates of heating and cooling. We estimate that heating (7–14°C/Ma) outpaced reasonable radiogenic heating rates with modest mantle heat conduction. Therefore, we conclude that elevated mantle heat conduction or injection of mantle‐derived magmas likely contributed to regional ultrahigh‐temperature metamorphism (UHTM). Exhumation and cooling from peak metamorphic conditions to the solidus occurred at rates greater than 0.45 km/Ma and 14°C/Ma.

    more » « less
  5. Abstract

    Metamorphic rocks from the Connecticut Valley Trough (CVT), Vermont, and Massachusetts, have been examined using quartz‐in‐garnet (QuiG) and conventional thermobarometry, thermodynamic reaction modelling, diffusion modelling, and40Ar/39Ar thermochronology to constrain theirP–T–tpaths during Acadian metamorphism and subsequent exhumation. Numerous samples, collected in the vicinity of the Acadian domes, contain garnet porphyroblasts that display cloudy zones characterized by numerous fluid inclusions and modified garnet compositions associated with the replacement of the original garnet by biotite±muscovite±plagioclase±quartz±lowXgrs/enrichedXsps. QuiG and conventional thermobarometry constrain both the conditions of garnet nucleation and peakP–Tconditions to have occurred at ~0.85–1.05 GPa, ~550–600°C. Most notably, QuiG barometry was performed on inclusions adjacent to these reaction zones in conjunction with Gibbs method reaction modelling to reveal that these dissolution–reprecipitation reactions occurred during nearly isothermal decompression from the peakP–Tconditions to around ~0.3 GPa, 550°C. Diffusion modelling reveals that the Mn zoning profiles created during garnet resorption that accompanied decompression formed in less thanc. 3 Ma, which constrains the tectonic exhumation to have occurred at 8–10 mm/year. Subsequent cooling to 500°C occurred rapidly at a rate of 100°C/Ma, followed by slower cooling reaching 1.7°C /Ma by the mid Carboniferous. This is the first reported example of QuiG barometry revealing a multi‐stage metamorphic history and highlights the utility of this method for unravelling complex metamorphic terranes.

    more » « less