skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Thermal Ionization of Hydrogen in Hydrous Olivine With Enhanced and Anisotropic Conductivity

Trace amounts of hydrogen in olivine can significantly increase its conductivity. However, the conduction mechanism in hydrous olivine is still unclear, which hinders the in‐depth understanding of the high conductivity structures of the asthenosphere. We investigate the proton conduction mechanism in hydrous olivine usingab initiocalculations. Several models were examined using climbing image nudged elastic band andab initiomolecular dynamics methods. We found that hydrogen trapped at the Mg (or Fe) defect is more mobile than hydrogen trapped at the Si defect. At high temperature, we observed the ionization of hydrogen from cation defects leading to high and anisotropic proton conductivity along the [100] direction. The highly anisotropic conductivity caused by thermal ionized hydrogen at high temperature explains the experimental observations on olivine single crystals.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogen may be incorporated into nominally anhydrous minerals including bridgmanite and post‐perovskite as defects, making the Earth's deep mantle a potentially significant water reservoir. The diffusion of hydrogen and its contribution to the electrical conductivity in the lower mantle are rarely explored and remain largely unconstrained. Here we calculate hydrogen diffusivity in hydrous bridgmanite and post‐perovskite, using molecular dynamics simulations driven by machine learning potentials of ab initio quality. Our findings reveal that hydrogen diffusivity significantly increases with increasing temperature and decreasing pressure, and is considerably sensitive to hydrogen incorporation mechanism. Among the four defect mechanisms examined, (Mg + 2H)Siand (Al + H)Sishow similar patterns and yield the highest hydrogen diffusivity. Hydrogen diffusion is generally faster in post‐perovskite than in bridgmanite, and these two phases exhibit distinct diffusion anisotropies. Overall, hydrogen diffusion is slow on geological time scales and may result in heterogeneous water distribution in the lower mantle. Additionally, the proton conductivity of bridgmanite for (Mg + 2H)Siand (Al + H)Sidefects aligns with the same order of magnitude of lower mantle conductivity, suggesting that the water distribution in the lower mantle may be inferred by examining the heterogeneity of electrical conductivity.

    more » « less
  2. The transport of excess protons and hydroxide ions in water underlies numerous important chemical and biological processes. Accurately simulating the associated transport mechanisms ideally requires utilizing ab initio molecular dynamics simulations to model the bond breaking and formation involved in proton transfer and path-integral simulations to model the nuclear quantum effects relevant to light hydrogen atoms. These requirements result in a prohibitive computational cost, especially at the time and length scales needed to converge proton transport properties. Here, we present machine-learned potentials (MLPs) that can model both excess protons and hydroxide ions at the generalized gradient approximation and hybrid density functional theory levels of accuracy and use them to perform multiple nanoseconds of both classical and path-integral proton defect simulations at a fraction of the cost of the corresponding ab initio simulations. We show that the MLPs are able to reproduce ab initio trends and converge properties such as the diffusion coefficients of both excess protons and hydroxide ions. We use our multi-nanosecond simulations, which allow us to monitor large numbers of proton transfer events, to analyze the role of hypercoordination in the transport mechanism of the hydroxide ion and provide further evidence for the asymmetry in diffusion between excess protons and hydroxide ions.

    more » « less
  3. Abstract

    Antiperovskite structure compounds (X3AB, where X is an alkali cation and A and B are anions) have the potential for highly correlated motion between the cation and a cluster anion on the A or B site. This so‐called “paddle‐wheel” mechanism may be the basis for enhanced cation mobility in solid electrolytes. Through combined experiments and modeling, the first instance of a double paddle‐wheel mechanism, leading to fast sodium ion conduction in the antiperovskite Na3−xO1−x(NH2)x(BH4), is shown. As the concentration of amide (NH2) cluster anions is increased, large positive deviations in ionic conductivity above that predicted from a vacancy diffusion model are observed. Using electrochemical impedance spectroscopy, powder X‐ray diffraction, synchrotron X‐ray diffraction, neutron diffraction, ab initio molecular dynamics simulations, and NMR, the cluster anion rotational dynamics are characterized and it is found that cation mobility is influenced by the rotation of both NH2and BH4species, resulting in sodium ion conductivity a factor of 102higher atx = 1 than expected for the vacancy mechanism alone. Generalization of this phenomenon to other compounds could accelerate fast ion conductor exploration and design.

    more » « less
  4. Abstract

    All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature.

    more » « less
  5. Abstract

    As technologically important materials for solid‐state batteries, Li super‐ionic conductors are a class of materials exhibiting exceptionally high ionic conductivity at room temperature. These materials have unique crystal structural frameworks hosting a highly conductive Li sublattice. However, it is not understood why certain crystal structures of the super‐ionic conductors lead to high conductivity in the Li sublattice. In this study, using topological analysis and ab initio molecular dynamics simulations, the crystal structures of all Li‐conducting oxides and sulfides are studied systematically and the key features pertaining to fast‐ion conduction are quantified. In particular, a unique feature of enlarged Li sites caused by large local spaces in the crystal structural framework is identified, promoting fast conduction in the Li‐ion sublattice. Based on these quantified features, the high‐throughput screening identifies many new structures as fast Li‐ion conductors, which are further confirmed by ab initio molecular dynamics simulations. This study provides new insights and a systematic quantitative understanding of the crystal structural frameworks of fast ion‐conductor materials and motivates future experimental and computational studies on new fast‐ion conductors.

    more » « less