skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transient Absorption Spectra of Metal‐Free and Transition‐Metal 5,10,15,20‐Tetraferrocene Porphyrins: Influence of the Central Metal Ion, Solvent Polarity, and the Axial Ferrocene Ligand
Abstract The transient absorption spectra of the series of diamagnetic H2TFcP, ZnTFcP, PdTFcP, and FcInTFcP compounds (TFcP(2‐)=5,10,15,20‐tetraferroceneporphyrin dianion) were investigated in polar (DMF) and non‐polar (toluene) solvents using excitation at 650 nm. The formation and the deactivation of the charge‐separated (Fc+‐Porphyrin−.) state were observed in all cases. The lifetime of the charge‐separated state is nearly constant for all compounds (∼20 ps) and independent of the nature of the central ion and solvent. The formation of the triplet state in all the complexes was not observed. The third, minor long‐lived (160–480 ps) component was observed in polar DMF solvent. This component was tentatively assigned to the porphyrin species that are weakly bound to the carbonyl oxygen in DMF. DFT and TDDFT calculations on the ground state, excited state, and triplet state of the target compounds were in agreement with the experimental data.  more » « less
Award ID(s):
2153081
PAR ID:
10367084
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
2022
Issue:
13
ISSN:
1434-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A far‐red absorbing sensitizer, BF2‐chelated azadipyrromethane (azaBODIPY) has been employed as an electron acceptor to synthesize a series of push‐pull systems linked with different nitrogenous electron donors, viz.,N,N‐dimethylaniline (NND), triphenylamine (TPA), and phenothiazine (PTZ) via an acetylene linker. The structural integrity of the newly synthesized push‐pull systems was established by spectroscopic, electrochemical, spectroelectrochemical, and DFT computational methods. Cyclic and differential pulse voltammetry studies revealed different redox states and helped in the estimation of the energies of the charge‐separated states. Further, spectroelectrochemical studies performed in a thin‐layer optical cell revealed diagnostic peaks of azaBODIPY⋅in the visible and near‐IR regions. Free‐energy calculations revealed the charge separation from one of the covalently linked donors to the1azaBODIPY* to yield Donor⋅+‐azaBODIPY⋅to be energetically favorable in a polar solvent, benzonitrile, and the frontier orbitals generated on the optimized structures helped in assessing such a conclusion. Consequently, the steady‐state emission studies revealed quenching of the azaBODIPY fluorescence in all of the investigated push‐pull systems in benzonitrile and to a lesser extent in mildly polar dichlorobenzene, and nonpolar toluene. The femtosecond pump‐probe studies revealed the occurrence of excited charge transfer (CT) in nonpolar toluene while a complete charge separation (CS) for all three push‐pull systems in polar benzonitrile. The CT/CS products populated the low‐lying3azaBODIPY* prior to returning to the ground state. Global target (GloTarAn) analysis of the transient data revealed the lifetime of the final charge‐separated states (CSS) to be 195 ps for NND‐derived, 50 ps for TPA‐derived, and 85 ps for PTZ‐derived push‐pull systems in benzonitrile. 
    more » « less
  2. Abstract The use of polar solvents MeCN or dimethylformamide (DMF) was previously shown to induce a selectivity switch in the Pd/PtBu3‐catalyzed Suzuki‐Miyaura coupling of chloroaryl triflates. This phenomenon was attributed to the ability of polar solvents to stabilize anionic transition states for oxidative addition. However, we demonstrate that selectivity in this reaction does not trend with solvent dielectic constant. Unlike MeCN and DMF, water, alcohols, and several polar aprotic solvents such as MeNO2, acetone, and propylene carbonate provide the same selectivity as nonpolar solvents. These results indicate that the role of solvent on the selectivity of Suzuki‐Miyaura couplings may be more complex than previously envisioned. Furthermore, this observation has the potential for synthetic value as it greatly broadens the scope of solvents that can be used for chloride‐selective cross coupling of chloroaryl triflates. 
    more » « less
  3. The electronic communication between two ferrocene groups in the electron-deficient expanded aza-BODIPY analogue of zinc manitoba-dipyrromethene (MB-DIPY) was probed by spectroscopic, electrochemical, spectroelectrochemical, and theoretical methods. The excited-state dynamics involved sub- ps formation of the charge-separated state in the organometallic zinc MB-DIPYs, followed by recovery of the ground state via charge recombination in 12 ps. The excited-state behavior was contrasted with that observed in the parent complex that lacked the ferrocene electron donors and has a much longer excited-state lifetime (670 ps for the singlet state). Much longer decay times observed for the parent complex without ferrocene confirm that the main quenching mechanism in the ferrocene-containing 4 is reflective of the ultrafast ferrocene-to-MB-DIPY core charge transfer (CT 
    more » « less
  4. Abstract Here, four MOFs, namely Sc-TBAPy, Al-TBAPy, Y-TBAPy, and Fe-TBAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoic acid)pyrene), were characterized and evaluated for their ability to remediate glyphosate (GP) from water. Among these materials, Sc-TBAPy demonstrates superior performance in both the adsorption and degradation of GP. Upon light irradiation for 5 min, Sc-TBAPy completely degrades 100% of GP in a 1.5 mM aqueous solution. Femtosecond transient absorption spectroscopy reveals that Sc-TBAPy exhibits enhanced charge transfer character compared to the other MOFs, as well as suppressed formation of emissive excimers that could impede photocatalysis. This finding was further supported by hydrogen evolution half-reaction (HER) experiments, which demonstrated Sc-TBAPy’s superior catalytic activity for water splitting. In addition to its faster adsorption and more efficient photodegradation of GP, Sc-TBAPy also followed a selective pathway towards the oxidation of GP, avoiding the formation of toxic aminomethylphosphonic acid observed with the other M3+-TBAPy MOFs. To investigate the selectivity observed with Sc-TBAPy, electron spin resonance, depleted oxygen conditions, and solvent exchange with D2O were employed to elucidate the role of different reactive oxygen species on GP photodegradation. The findings indicate that singlet oxygen (1O2) plays a critical role in the selective photodegradation pathway achieved by Sc-TBAPy. 
    more » « less
  5. Abstract A series of four oligothiophenes end‐capped with −Pt(PBu3)2Cl moieties on both ends of the oligomers was synthesized, and their excited state properties were investigated. The observation of low fluorescence quantum yield (<2 %) for the oligomers indicates the strong effect of platinum on the intersystem crossing (ISC) efficiency. No phosphorescence was detected for any of the oligomers; however, strong triplet‐triplet absorption was observed by nanosecond transient spectroscopy for oligomers with more than one thiophene unit. The oligomers displayed short triplet lifetimes (∼1–2 μs) compared to the unmetallated oligomers, due to large spin‐orbit coupling induced by the platinum atom. The lower limits of the ISC yields were indirectly determined by measuring the singlet oxygen quantum yields. Femtosecond–picosecond transient absorption studies revealed that the ISC rate ranges from 1012–1010 s−1, decreasing with increasing oligomer length. Electrochemical studies showed that the oligomers exhibit relatively low oxidation potentials (ca. 0.1 V vs. Fc/Fc+). Quenching of the oligomers’ triplet state absorption, simultaneously with the rise of their corresponding cationic radical absorption band in nanosecond transient spectra in the presence of methyl viologen, as an electron acceptor, established that the electron transfer occurs from their triplet state. 
    more » « less