skip to main content


Title: Variable In Situ Stress Orientations Across the Northern Hikurangi Subduction Margin
Abstract

We constrain orientations of the horizontal stress field from borehole image data in a transect across the Hikurangi Subduction Margin. This region experiences NW‐SE convergence and is the site of recurrent slow slip events. The direction of the horizontal maximum stress is E‐W at an active splay thrust fault near the subduction margin trench. This trend changes to NNW‐SSE in a forearc trench slope basin on the offshore accretionary wedge, and to NE‐SW in the onshore forearc. Multiple, tectonic, and geological processes, either individually or in concert, may explain this variability. The observed offshore to onshore stress rotation may reflect a change from dominantly compressional tectonics at the deformation front, to a strike‐slip and/or extensional tectonic regime closer to the Taupo Volcanic Zone, further inland. In addition, the offshore stress may be affected by topography and/or stress rotation around subducting seamounts, and/or temporal stress changes during the slow slip cycle.

 
more » « less
NSF-PAR ID:
10367104
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In 2014–2015, the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip experiment deployed seafloor absolute pressure gauges and ocean bottom seismometers directly above a large slow slip event, allowing examination of the relationship between slow slip and earthquakes in detail. Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip data were combined with nearby existing land stations to create a catalog of microseismicity consisting of 2,300 earthquakes ranging in magnitude between 0.5 and 4.7 that is complete to magnitude 1.5, yielding almost twice as many events as detected by the onshore networks alone. This greatly improves the seismicity catalog for this active subduction zone margin, especially in the offshore portion that was difficult to study using only the inland permanent seismic network. The new locations for the events within the footprint of the offshore network show that earthquakes near the trench are systematically shallower than and NW (landward) of their locations using only land‐based stations. Our results indicate that Hikurangi seismicity is concentrated in two NE‐SW bands, one offshore beneath the outer forearc wedge, one onshore beneath the eastern Raukumara Peninsula, and the majority of earthquakes are within the subducting Pacific plate with a smaller percent at the plate interface. We find a 20‐km wide northeast trending gap in microseismicity between the two bands and beneath the inner forearc wedge and this gap in seismicity borders the downdip edge of a slow slip patch.

     
    more » « less
  2. SUMMARY

    The dynamics of accretionary prisms and the processes that take place along subduction interfaces are controlled, in part, by the porosity and fluid overpressure of both the forearc wedge and the sediments transported to the system by the subducting plate. The Hikurangi Margin, located offshore the North Island of New Zealand, is a particularly relevant area to investigate the interplay between the consolidation state of incoming plate sediments, dewatering and fluid flow in the accretionary wedge and observed geodetic coupling and megathrust slip behaviour along the plate interface. In its short geographic extent, the margin hosts a diversity of properties that impact subduction processes and that transition from north to south. Its southernmost limit is characterized by frontal accretion, thick sediment subduction, the absence of seafloor roughness, strong interseismic coupling and deep slow slip events. Here we use seafloor magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data collected along a profile through the southern Hikurangi Margin to image the electrical resistivity of the forearc and incoming plate. Resistive anomalies in the shallow forearc likely indicate the presence of gas hydrates, and we relate deeper forerarc resistors to thrust faulting imaged in colocated seismic reflection data. Because MT and CSEM data are highly sensitive to fluid phases in the pore spaces of seafloor sediments and oceanic crust, we convert resistivity to porosity to obtain a representation of fluid distribution along the profile. We show that porosity predicted by the resistivity data can be well fit by an exponential sediment compaction model. By removing this compaction trend from the porosity model, we are able to evaluate the second-order, lateral changes in porosity, an approach that can be applied to EM data sets from other sedimentary basins. Using this porosity anomaly model, we examine the consolidation state of the incoming plate and accretionary wedge sediments. A decrease in porosity observed in the sediments approaching the trench suggests that a protothrust zone is developing ∼25 km seaward of the frontal thrust. Our data also imply that sediments deeper in the accretionary wedge are slightly underconsolidated, which may indicate incomplete drainage and elevated fluid overpressures of the deep wedge.

     
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 372 combines two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (Proposal 841-APL). Our study area on the Hikurangi margin east of New Zealand provides unique locations for addressing both research topics. Gas hydrates have long been suspected of being involved in seafloor failure; not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, icelike gas hydrate in sediment pores is generally thought to increase seafloor strength, as confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may destabilize the seafloor, potentially causing submarine landslides. The Tuaheni Landslide Complex on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinchout of the base of gas hydrate stability (BGHS) on the seafloor. We therefore hypothesize that gas hydrate may be linked to creeping by (1) repeated small-scale sliding at the BGHS, in a variation of the conventional model linking gas hydrates and seafloor failure; (2) overpressure at the BGHS due to a permeability reduction linked to gas hydrates, which may lead to hydrofracturing, weakening the seafloor and allowing transmission of pressure into the gas hydrate stability zone; or (3) icelike viscous deformation of gas hydrates in sediment pores, similar to onshore rock glaciers. The latter two processes imply that gas hydrate itself is involved in creeping, constituting a paradigm shift in relating gas hydrates to submarine slope failure. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. We have devised a coring and logging program to test our hypotheses. SSEs at subduction zones are an enigmatic form of creeping fault behavior. At the northern Hikurangi subduction margin (HSM), they are among the best-documented and shallowest on Earth. They recur about every 2 y and may extend close to the trench, where clastic and pelagic sediments about 1.0–1.5 km thick overlie the subducting, seamount-studded Hikurangi Plateau. The northern HSM thus provides an excellent setting to use IODP capabilities to discern the mechanisms behind slow slip fault behavior, as proposed in IODP Proposal 781A-Full. The objectives of Proposal 781A-Full will be implemented across two related IODP expeditions, 372 and 375. Expedition 372 will undertake logging while drilling (LWD) at three sites targeting the upper plate (midslope basin, proposed Site HSM-01A), the frontal thrust (proposed Site HSM-18A), and the subducting section in the trench (proposed Site HSM-05A). Expedition 375 will undertake coring at the same sites, as well as an additional seamount site on the subducting plate, and implement the borehole observatory objectives. The data from each expedition will be shared between both scientific parties. Collectively, the LWD and coring data will be used to (1) characterize the compositional, structural, thermal, and diagenetic state of the incoming plate and the shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock associated with SSEs at greater depth, and (2) characterize the material properties, thermal regime, and stress conditions in the upper plate above the SSE source region. These data will be used during Expedition 375 to guide the installation of CORK observatories at the frontal thrust and in the upper plate above the SSE source to monitor temporal variations in deformation, fluid flow, seismicity, and physical and chemical properties throughout the SSE cycle (Saffer et al., 2017). Together, these data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  4. Abstract

    The Cascadia subduction zone (CSZ) is known to host M9 megathrust ruptures; however, no such event has occurred in historical observation. The distribution and characteristics of small‐ to moderate‐sized earthquakes can be used to determine the behavior of the megathrust fault but are notably absent offshore the CSZ due to the distance from onshore seismometers. We use automated subspace detection coupled with an onshore‐offshore seismic deployment to find small‐magnitude earthquakes in the offshore seismogenic zone and analyze their locations in the context of interseismic locking and seismogenic zone extent. We detected and located 5,282 earthquakes, 4,096 of which had been previously undetected. We find that the downdip extent of the seismogenic zone as defined by interplate seismicity agrees with the 20% locking contour of the Schmalzle et al. (2014,https://doi.org/10.1002/2013GC005172) geodetic model and extends deeper than predicted by previous thermal models. We cannot determine the updip extent of the seismogenic zone; this may be due to a lack of templates for detection in the updip source area, stress shadows updip of asperity loading, and/or strong locking to the trench. We present a map of possible asperities determined by the small earthquakes in this study. Our asperity locations and extents show some, but not complete, agreement with the asperities modeled from the 1700 M9 rupture and geodetic locking models, and good agreement with the paleo‐rupture extents determined from offshore turbidites and forearc basin‐based asperity estimates. This highlights the need of continued offshore observations over time, and to elucidate fine‐scale variation in locking.

     
    more » « less
  5. Abstract

    Seafloor pressure sensor data is emerging as a promising approach to resolve vertical displacement of the seafloor in the offshore reaches of subduction zones, particularly in response to slow slip events (SSEs), although such signals are challenging to resolve due to sensor drift and oceanographic signals. Constraining offshore SSE slip distribution is of key importance to understanding earthquake and tsunami hazards posed by subduction zones. We processed seafloor pressure data from January to October 2019 acquired at the Hikurangi subduction zone, offshore New Zealand, to estimate vertical displacement associated with a large SSE that occurred beneath the seafloor array. The experiment included three self‐calibrating sensors designed to remove sensor drift, which, together with ocean general circulation models, were essential to the identification and correction of long‐period ocean variability remaining in the data after applying traditional processing techniques. We estimate that long‐period oceanographic signals that were not synchronous between pressure sensors and reference sites influenced our inferred displacements by 0.3–2.6 cm, suggesting that regionally deployed reference sites alone may not provide sufficient ocean noise correction. After incorporating long‐period ocean variability corrections into the processing, we calculate 1.0–3.3 cm of uplift during the SSE offshore Gisborne at northern Hikurangi, and 1.1–2.7 cm of uplift offshore the Hawke's Bay area at central Hikurangi. Some Hawke Bay displacements detected by pressure sensors near the trench were delayed by 6 weeks compared to the timing of slip onset detected by onshore Global Navigation Satellite System sites, suggesting updip migration of the SSE.

     
    more » « less