skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bridge inspection component registration for damage evolution
There have been great advances in bridge inspection damage detection involving the use of deep learning models. However, automated detection models currently fall short of giving an inspector an understanding of how the damage has progressed from one inspection to the next. The rate-of-change of the damage is a critical piece of information used by engineers to determine appropriate maintenance and rehabilitation actions to prevent structural failures. We propose a simple methodology for registering two bridge inspection videos or still images, collected at different stages of deterioration, so that trained model predictions may be directly measured and damage progression compared. The changes may be documented and presented to the inspector so that they may quickly evaluate key interest regions in the inspection video or image. Three approaches referred to as rigid, deformable, and hybrid image registration methods were experimentally tested and evaluated based on their ability to preserve the geometric characteristics of the referenced image. It was found in all experiments that the rigid, homography-based transformations performed the best for this application over a state-of-the-art deformable registration method, RANSAC-Flow.  more » « less
Award ID(s):
1840044
PAR ID:
10367136
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Structural Health Monitoring
Volume:
22
Issue:
1
ISSN:
1475-9217
Format(s):
Medium: X Size: p. 472-495
Size(s):
p. 472-495
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Corrosion on steel bridge members is one of the most important bridge deficiencies that must be carefully monitored by inspectors. Human visual inspection is typically conducted first, and additional measures such as tapping bolts and measuring section losses can be used to assess the level of corrosion. This process becomes a challenge when some of the connections are placed in a location where inspectors have to climb up or down the steel members. To assist this inspection process, we developed a computervision based Unmanned Aerial Vehicle (UAV) system for monitoring the health of critical steel bridge connections (bolts, rivets, and pins). We used a UAV to collect images from a steel truss bridge. Then we fed the collected datasets into an instance level segmentation model using a region-based convolutional neural network to train characteristics of corrosion shown at steel connections with sets of labeled image data. The segmentation model identified locations of the connections in images and efficiently detected the members with corrosion on them. We evaluated the model based on how precisely it can detect rivets, bolts, pins, and corrosion damage on these members. The results showed robustness and practicality of our system which can also provide useful health information to bridge owners for future maintenance. These collected image data can be used to quantitatively track temporal changes and to monitor progression of damage in aging steel structures. Furthermore, the system can also assist inspectors in making decisions for further detailed inspections. 
    more » « less
  2. The current methods to identify the bridge damage depend on time-consuming visual inspection and/or based on the data collected from sensor-based monitoring, which make the assessment process very expensive. In this paper, the bridge damage is identified using the data collected from an ordinary strain transducer. In order to demonstrate the new method, 3-D finite element models followed by the Inverse Dynamics Optimization Algorithm are performed. The inverse algorithm utilized to calculate the weight of the force that passes on the bridge. Any change in the bridge stiffness by damage will influence the force history which calculated by the inverse algorithm. The proposed method divided into two stages: in the first one, two finite element models are used to simulate the bridge displacement due to quarter car model one representing the healthy bridge and the other for the damage one. In the second stage, the inverse dynamics optimization algorithm used to identify the damage locations. 
    more » « less
  3. Image registration is broadly used in various scenarios in which similar scenes in different images are to be aligned. However, image registration becomes challenging when the contrasts and backgrounds in the images are vastly different. This work proposes using the total variation of the difference map between two images (TVDM) as a dissimilarity metric in rigid registration. A method based on TVDM minimization is implemented for image rigid registration. The method is tested with both synthesized and real experimental data that have various noise and background conditions. The performance of the proposed method is compared with the results of other rigid registration methods. It is demonstrated that the proposed method is highly accurate and robust and outperforms other methods in all of the tests. The new algorithm provides a robust option for image registrations that are critical to many nano-scale X-ray imaging and microscopy applications. 
    more » « less
  4. The purpose of a routine bridge inspection is to assess the physical and functional condition of a bridge according to a regularly scheduled interval. The Federal Highway Administration (FHWA) requires these inspections to be conducted at least every 2 years. Inspectors use simple tools and visual inspection techniques to determine the conditions of both the elements of the bridge structure and the bridge overall. While in the field, the data is collected in the form of images and notes; after the field work is complete, inspectors need to generate a report based on these data to document their findings. The report generation process includes several tasks: (1) evaluating the condition rating of each bridge element according to FHWA Recording and Coding Guide for Structure Inventory and Appraisal of the Nation’s Bridges; and (2) updating and organizing the bridge inspection images for the report. Both of tasks are time-consuming. This study focuses on assisting with the latter task by developing an artificial intelligence (AI)-based method to rapidly organize bridge inspection images and generate a report. In this paper, an image organization schema based on the FHWA Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s Bridges and the Manual for Bridge Element Inspection is described, and several convolutional neural network-based classifiers are trained with real inspection images collected in the field. Additionally, exchangeable image file (EXIF) information is automatically extracted to organize inspection images according to their time stamp. Finally, the Automated Bridge Image Reporting Tool (ABIRT) is described as a browser-based system built on the trained classifiers. Inspectors can directly upload images to this tool and rapidly obtain organized images and associated inspection report with the support of a computer which has an internet connection. The authors provide recommendations to inspectors for gathering future images to make the best use of this tool. 
    more » « less
  5. Drones are increasingly used during routine inspections of bridges to improve data consistency, work efficiency, inspector safety, and cost effectiveness. Most drones, however, are operated manually within a visual line of sight and thus unable to inspect long-span bridges that are not completely visible to operators. In this paper, aerial nondestructive evaluation (aNDE) will be envisioned for elevated structures such as bridges, buildings, dams, nuclear power plants, and tunnels. To enable aerial nondestructive testing (aNDT), a human-robot system will be created to integrate haptic sensing and dexterous manipulation into a drone or a structural crawler in augmented/virtual reality (AR/VR) for beyond-visual-line-of-sight (BVLOS) inspection of bridges. Some of the technical challenges and potential solutions associated with aNDT&E will be presented. Example applications of the advanced technologies will be demonstrated in simulated bridge decks with stipulated conditions. The developed human-robot system can transform current on-site inspection to future tele-inspection, minimizing impact to traffic passing over the bridges. The automated tele-inspection can save as much as 75% in time and 95% in cost. 
    more » « less