skip to main content

Title: Predicting T‐cell quality during manufacturing through an artificial intelligence‐based integrative multiomics analytical platform

Large‐scale, reproducible manufacturing of therapeutic cells with consistently high quality is vital for translation to clinically effective and widely accessible cell therapies. However, the biological and logistical complexity of manufacturing a living product, including challenges associated with their inherent variability and uncertainties of process parameters, currently make it difficult to achieve predictable cell‐product quality. Using a degradable microscaffold‐based T‐cell process, we developed an artificial intelligence (AI)‐driven experimental‐computational platform to identify a set of critical process parameters and critical quality attributes from heterogeneous, high‐dimensional, time‐dependent multiomics data, measurable during early stages of manufacturing and predictive of end‐of‐manufacturing product quality. Sequential, design‐of‐experiment‐based studies, coupled with an agnostic machine‐learning framework, were used to extract feature combinations from early in‐culture media assessment that were highly predictive of the end‐product CD4/CD8 ratio and total live CD4+and CD8+naïve and central memory T cells (CD63L+CCR7+). Our results demonstrate a broadly applicable platform tool to predict end‐product quality and composition from early time point in‐process measurements during therapeutic cell manufacturing.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Bioengineering & Translational Medicine
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Emerging cellular therapies require effective platforms for producing clinically relevant numbers of high‐quality cells. This report introduces a materials‐based approach to improving expansion of T cells, a compelling agent for treatment of cancer and a range of other diseases. The system consists of electrospun fibers, which present activating antibodies to CD3 and CD28. These fibers are effective in activating T cells, initiating expansion, and simplify processing of the cellular product, compared to current bead‐base platforms. In addition, reducing the mechanical rigidity of these fibers enhances expansion of mixed populations of human CD4+and CD8+T cells, providing eightfold greater production of cells in each round of cell growth. This platform also rescues expansion of T cells isolated from CLL patients, which often show limited responsiveness and other features resembling exhaustion. By simplifying the process of cell expansion and improving T cell expansion, the system introduced here provides a powerful tool for the development of cellular immunotherapy.

    more » « less
  2. Cancer has been one of the most significant and critical challenges in the field of medicine. It is a leading cause of death both in the United States and worldwide. Common cancer treatments such as radiation and chemotherapy can be effective in destroying cancerous tissue but cause many detrimental side effects. Thus, recent years have seen new treatment methods that do not harm healthy tissue, including immunotherapy. Adoptive cell therapy (ACT) is one form of immunotherapy in which patients’ immune cells are modified to target cancer cells and then reintroduced into the body. ACT is promising, but most current treatments are inefficient and costly. Widespread implementation of ACT has been a difficult task due to the high treatment cost and inefficient methods currently used to expand the cells. Additionally, if the manufacturing process is not carefully controlled, it can result in the cells losing their cancer-killing ability after expansion. To address the need for an economically feasible culture process to expand immune cells for immunotherapy, our laboratory has designed a centrifugal bioreactor (CBR) expansion system. The CBR uses a balance of centrifugal forces and fluid forces, as shown in Figure 1, to quickly expand infected CD8+ T-cells from a bovine model up to high population densities. With other applications, the CBR has achieved cell densities as high as 1.8 x 108 cells/mL over 7 days in an 11.4-mL chamber. For this study, our goal is to begin validating the CBR by optimizing the growth of CEM (human lymphoblastic leukemia) cells, which are similar cell to cytotoxic T lymphocytes (CTLs). This can be accomplished by measuring kinetic growth parameters based on the concentrations of glucose and inhibitory metabolites in the culture. We hypothesize that by designing a kinetic model from static culture experiments, we can predict the parameters necessary to achieve peak CEM and eventually CTL growth in the CBR. We will report on kinetic growth studies in which different glucose concentrations are tested, and a maximum specific growth rate and Monod constant determined, as well as studies where varying levels of the inhibitory growth byproducts, lactate and ammonium, are added to the culture and critical inhibitor concentrations are determined. Another recent conceptual development for the design of the CBR is a real-time monitoring and feedback control system to regulate the cellular environment, based on levels of surface co-receptors and mRNA signaling within the culture. Prior studies have pinpointed T cell exhaustion as a significant issue in achieving successful immunotherapy, particularly in treatments for solid tumors; T cell exhaustion occurs during a period of chronic antigen stimulation when the cells lose their ability to target and kill cancer cells, currently theorized to be associated with particular inhibitory receptors and cytokines in the immune system. Designing a system with a fiber optic sensor that can monitor the cell state and use feedback control to regulate the pathways involved in producing these receptors will ensure the cells maintain cytotoxic properties during the expansion process within a Centrifugal Fluidized Expansion we call the CentriFLEX. In this presentation, we will also report on early results from development of this exhaustion monitoring system. In brief, achieving optimal kinetic models for the CBR system and methods to prevent T cell exhaustion has the potential to significantly enhance culture efficiency and availability of immunotherapy treatments. 
    more » « less
  3. Abstract

    Biomaterial properties that modulate T cell activation, growth, and differentiation are of significant interest in the field of cellular immunotherapy manufacturing. In this work, a new platform technology that allows for the modulation of various activation particle design parameters important for polyclonal T cell activation is presented. Artificial antigen presenting cells (aAPCs) are successfully created using supported lipid bilayers on various cell‐templated silica microparticles with defined membrane fluidity and stimulating antibody density. This panel of aAPCs is used to probe the importance of activation particle shape, size, membrane fluidity, and stimulation antibody density on T cell outgrowth and differentiation. All aAPC formulations are able to stimulate T cell growth, and preferentially promote CD8+T cell growth over CD4+T cell growth when compared to commercially available pendant antibody‐conjugated particles. T cells cultured with HeLa‐ and red blood cell–templated aAPCs have a less‐differentiated and less‐exhausted phenotype than those cultured with spherical aAPCs with matched membrane coatings when cultured for 14 days. These results support continued exploration of silica‐supported lipid bilayers as an aAPC platform.

    more » « less
  4. Abstract

    Mesenchymal stromal cells (MSCs) have shown promise in regenerative medicine applications due in part to their ability to modulate immune cells. However, MSCs demonstrate significant functional heterogeneity in terms of their immunomodulatory function because of differences in MSC donor/tissue source, as well as non-standardized manufacturing approaches. As MSC metabolism plays a critical role in their ability to expand to therapeutic numbers ex vivo, we comprehensively profiled intracellular and extracellular metabolites throughout the expansion process to identify predictors of immunomodulatory function (T-cell modulation and indoleamine-2,3-dehydrogenase (IDO) activity). Here, we profiled media metabolites in a non-destructive manner through daily sampling and nuclear magnetic resonance (NMR), as well as MSC intracellular metabolites at the end of expansion using mass spectrometry (MS). Using a robust consensus machine learning approach, we were able to identify panels of metabolites predictive of MSC immunomodulatory function for 10 independent MSC lines. This approach consisted of identifying metabolites in 2 or more machine learning models and then building consensus models based on these consensus metabolite panels. Consensus intracellular metabolites with high predictive value included multiple lipid classes (such as phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins) while consensus media metabolites included proline, phenylalanine, and pyruvate. Pathway enrichment identified metabolic pathways significantly associated with MSC function such as sphingolipid signaling and metabolism, arginine and proline metabolism, and autophagy. Overall, this work establishes a generalizable framework for identifying consensus predictive metabolites that predict MSC function, as well as guiding future MSC manufacturing efforts through identification of high-potency MSC lines and metabolic engineering.

    more » « less
  5. Abstract

    In mammals, T cell migration is under circadian control, likely to anticipate daily rhythms in infection risk. Glucocorticoids control this process, and malnutrition is associated with increased glucocorticoid levels. Therefore, we evaluated whether malnutrition disrupts the circadian migratory patterns of T cells. Malnutrition did not impact circadian patterns of T cell residency of lymphoid tissues; indicating that fluctuations, rather than specific concentrations, of glucocorticoids are a key circadian signal. Additionally, the total number of CD4+ and CD8+ T cells in the lymph nodes and blood were lower in malnourished as compared to well-nourished mice. However, the percentage and total number of naïve T cells was maintained in the lymph nodes, blood, and spleen of malnourished mice, suggesting preferential preservation of naïve T cells. Interestingly, the percentage and total number of CD4+ and CD8+ T cells in the bone marrow was elevated significantly in mice on a malnourished diet. Additionally, malnourished CD4+ and CD8+ T cells in the bone marrow showed significantly high CCR7 expression and CCL21 expression was increased in malnourished bone marrow compared to control. CCR7 and its chemokine, CCL21, may be responsible for trafficking malnourished T cells to the bone marrow during malnutrition. Overall, these findings suggest that the bone marrow may contribute to naïve T cell preservation during malnutrition.

    NSF-MRI [DBI- 1920116] NSF -RUI [IOS-1951881]

    more » « less