skip to main content


Title: Footloose: Articular surface morphology and joint movement potential in the ankles of lorisids and cheirogaleids
Abstract Objectives

The competing functional demands of diarthrodial joints, permitting mobility while retaining enough stability to transmit forces across the joint, have been linked with the shape and size of the joint's articular surfaces. A clear understanding of the relationship between joint morphology and joint movement potential is important for reconstructing locomotor behaviors in fossil taxa.

Methods

In a sample of matched tali and calcanei of lorisids (n = 28) and cheirogaleids (n = 38), we quantify the surface areas of the talar and calcaneal ectal (=posterior talocalcaneal) articular surfaces and model the principal curvatures of these surfaces with quadric formulas. These two taxonomic groups have similar body masses, but differ substantially in positional behavior, so that differences in joint surface morphology should reflect adaptive demands of their locomotor behavior.

Results

Compared with cheirogaleids, lorisids exhibit: (a) a significantly greater area difference between their paired joint surfaces; and (b) a more pronounced saddle shape for the talar ectal facet.

Conclusion

The increased subtalar joint mobility observed in lorisids may be achieved by increasing the amount of sliding and rolling that can occur at the subtalar joint. The subtalar joint morphology observed in two fossil euarchontans, the plesiadapiformsPurgatoriussp. andPlesiadapis cookei, compares favorably with the morphology observed among lorisids, potentially suggesting antipronograde postures within these extinct taxa.

 
more » « less
PAR ID:
10367189
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Physical Anthropology
Volume:
175
Issue:
4
ISSN:
0002-9483
Page Range / eLocation ID:
p. 876-894
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Among human and nonhuman apes, calcaneal morphology exhibits significant variation that has been related to locomotor behavior. Due to its role in weight‐bearing, however, both body size and locomotion may impact calcaneal morphology. Determining how calcaneal morphologies vary as a function of body size is thus vital to understanding calcaneal functional adaptation. Here, we study calcaneus allometry and relative size in humans (n = 120) and nonhuman primates (n = 278), analyzing these relationships in light of known locomotor behaviors. Twelve linear measures and three articular facet surface areas were collected on calcaneus surface models. Body mass was estimated using femoral head superoinferior breadth. Relationships between calcaneal dimensions and estimated body mass were analyzed across the sample using phylogenetic least squares regression analyses (PGLS). Differences between humans and pooled nonhuman primates were tested using RMA ANCOVAs. Among (and within) genera residual differences from both PGLS regressions and isometry were analyzed using ANOVAs with post hoc multiple comparison tests. The relationships between all but two calcaneus dimensions and estimated body mass exhibit phylogenetic signal at the smallest taxonomic scale. This signal disappears when reanalyzed at the genus level. Calcaneal morphology varies relative to both body size and locomotor behavior. Humans have larger calcanei for estimated body mass relative to nonhuman primates as a potential adaptation for bipedalism. More terrestrial taxa exhibit longer calcaneal tubers for body mass, increasing the triceps surae lever arm. Among nonhuman great apes, more arboreal taxa have larger cuboid facet surface areas for body mass, increasing calcaneocuboid mobility.

     
    more » « less
  2. Abstract Objectives

    The effects of phylogeny and locomotor behavior on long bone structural proportions are assessed through comparisons between adult and ontogenetic samples of extant gorillas.

    Materials and Methods

    A total of 281 wild‐collected individuals were included in the study, divided into four groups that vary taxonomically and ecologically: western lowland gorillas (G. g. gorilla), lowland and highland grauer gorillas(G. b. graueri), and Virunga mountain gorillas (G. b. beringei). Lengths and articular breadths of the major long bones (except the fibula) were measured, and diaphyseal cross‐sectional geometric properties determined using computed tomography. Ages of immature specimens (n = 145) were known or estimated from dental development. Differences between groups in hind limb to forelimb proportions were assessed in both adults and during development.

    Results

    Diaphyseal strength proportions among adults vary in parallel with behavioral/ecological differences, and not phylogeny. The more arboreal western lowland and lowland grauer gorillas have relatively stronger forelimbs than the more terrestrial Virunga mountain gorillas, while the behaviorally intermediate highland grauer gorillas have intermediate proportions. Diaphyseal strength proportions are similar in young infants but diverge after 2 years of age in western lowland and mountain gorillas, at the same time that changes in locomotor behavior occur. There are no differences between groups in length or articular proportions among either adults or immature individuals.

    Conclusion

    Long bone diaphyseal strength proportions in gorillas are developmentally plastic, reflecting behavior, while length and articular proportions are much more genetically canalized. These findings have implications for interpreting morphological variation among fossil taxa.

     
    more » « less
  3. The foot plays a prominent role in weight-bearing suggesting it may reflect locomotor variation. Despite the immense amount of foot research, the calcaneus has been relatively understudied. Here we analyzed the entire calcaneal shape of Gorilla gorilla gorilla (n=41), Gorilla beringei graueri (n=17) and Gorilla beringei beringei (n=8) to understand how morphology relates to locomotor behavior. Calcanei were surface scanned and external shape analyzed using a three-dimensional geometric morphometric sliding semilandmark analysis. Semilandmarks were slid to minimize the bending energy of the thin plate spline interpolation function relative to the updated Procrustes average. Generalized Procrustes Analysis was used to align landmark configurations and shape variation was summarized using a principal components analysis. Procrustes distances between species were calculated and resampling statistics were run to test for group differences. All subspecies demonstrate statistically different morphologies (p<0.005 for pairwise comparisons). G. b. graueri separates from other subspecies based on posterolateral morphology, with G. b. graueri demonstrating an elongated peroneal trochlea, and thus more bone superiorly than G. g. gorilla. Compared to G. b. beringei, G. b. graueri has less bone inferiorly near the tuberosity. Cuboid and posterior talar facet shapes correlate with arboreality. G. b. beringei (most terrestrial) has a flatter cuboid facet and a more transversely oriented/relatively smaller posterior talar facet than G. g. gorilla (most arboreal) and G. b. graueri represents an intermediate morphology. These differences demonstrate a relationship between calcaneal shape and locomotor behavior and suggest that G. b. graueri may load its foot differently from the other subspecies. This project was supported by NSF grant # BCS - 1824630. 
    more » « less
  4. Abstract Objectives

    In this study, we explore whether ground reaction forces recorded during horizontal walking co‐vary with the shape of the long bones of the forelimb in strepsirrhines. To do so, we quantify (1) the shape of the shaft and articular surfaces of each long bone of the forelimb, (2) the peak vertical, mediolateral, and horizontal ground reaction forces applied by the forelimb during arboreal locomotion, and (3) the relationship between the shape of the forelimb and peak forces.

    Materials and methods

    Geometric morphometric approaches were used to quantify the shape of the bones. Kinetic data were collected during horizontal arboreal walking in eight species of strepsirrhines that show variation in habitual substrate use and morphology of the forelimb. These data were then used to explore the links between locomotor behavior, morphology, and mechanics using co‐variation analyses in a phylogenetic framework.

    Results

    Our results show significant differences between slow quadrupedal climbers (lorises), vertical clinger and leapers (sifaka), and active arboreal quadrupeds (ring‐tailed lemur, ruffed lemur) in both ground reaction forces and the shape of the long bones of the forelimb, with the propulsive and medially directed peak forces having the highest impact on the shape of the humerus. Co‐variation between long bone shape and ground reaction forces was detected in both the humerus and ulna even when accounting for differences in body mass.

    Discussion

    These results demonstrate the importance of considering limb‐loading beyond just peak vertical force, or substrate reaction force. A re‐evaluation of osseous morphology and functional interpretations is necessary in light of these findings.

     
    more » « less
  5. Abstract Objectives

    Recent evidence suggests that the amount of intraspecific variation in semicircular canal morphology may, itself, be evidence for varying levels of selection related to locomotor demands. To determine the extent of this phenomenon across taxa, we expand upon previous work by examining intraspecific variation in canal radii and canal orthogonality in a broad sample of strepsirrhine and platyrrhine primates. Patterns of interspecific variation are re‐examined in light of intraspecific variation to better understand the resolution at which locomotion can be reconstructed from single individuals.

    Materials and Methods

    Data was collected from high‐resolution CT scans of 14 size‐matched, related species. Six of these taxa have existing data on rotational head speeds.

    Results

    The level of intraspecific variation was found to differ in strepsirrhine and in platyrrhine species pairs, with larger ranges of variation generally observed for the slower moving taxon than the faster moving one. Taxa that are classified as relatively agile can to some extent be separated from those who are slower‐moving, but only when comparing similarly sized, closely related species with more extreme forms of locomotion.

    Discussion

    Our findings agree with previous research showing that canal intraspecific variation can fluctuate according to species‐specific locomotor behavior and extends this further by identifying behaviors that may be under unusual selective pressure. It also demonstrates the complexity of interpreting inner ear morphology in the context of broadly applicable locomotor “categories” of the kind commonly used in behavioral studies. We suspect that simplified models predicting vestibular sensitivity may be unable to differentiate behaviors when only a single specimen is available.

     
    more » « less