The structure and bonding of a Pr‐doped boron cluster (PrB7−) are investigated using photoelectron spectroscopy and quantum chemistry. The adiabatic electron detachment energy of PrB7−is found to be low [1.47(8) eV]. A large energy gap is observed between the first and second detachment features, indicating a highly stable neutral PrB7. Global minimum searches and comparison between experiment and theory show that PrB7−has a half‐sandwich structure with C6vsymmetry. Chemical bonding analyses show that PrB7−can be viewed as a PrII[η7‐B73−] complex with three unpaired electrons, corresponding to a Pr (4f26s1) open‐shell configuration. Upon detachment of the 6s electron, the neutral PrB7cluster is a highly stable PrIII[η7‐B73−] complex with Pr in its favorite +3 oxidation state. The B73−ligand is found to be highly stable and doubly aromatic with six delocalized π and six delocalized σ electrons and should exist for a series of lanthanide MIII[η7‐B73−] complexes.
The absolute total cross sections for the charge exchange between highly charged ions15N7+, O7+, and atomic H have been measured with the ion-atom merged-beams apparatus at Oak Ridge National Laboratory. The collision energy range is from 1224 down to 2 eV u−1, which covers outflowing hot components of astrophysical charge exchange plasmas like stellar-wind and supernova remnants. Good agreement with the previous measurements and theory is found for the collision energies above 100 eV u−1, while below 100 eV u−1limited agreement is achieved with the available calculations. These cross-section data are useful for modeling X-ray emission resulting from the charge exchange at the interface of hot plasma interacting with ambient neutral gas.
more » « less- PAR ID:
- 10367192
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 931
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 1
- Size(s):
- Article No. 1
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.more » « less
-
Abstract A novel transition metal chalcohalide [Cr7S8(en)8Cl2]Cl3 ⋅ 2H2O, with [Cr7S8]5+dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (
en ) solvents. Ethylenediamine ligand exhibits bi‐ and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant,θ =−224(2) K, obtained from Curie‐Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions betweenS =3/2 Cr(III) centers. Due to the complexity of the system with (2S +1)7=16384 microstates from seven Cr3+centers, a simplified model with only two exchange constants was used for simulations. Density‐functional theory (DFT) calculations yielded the two exchange constants to beJ 1=−21.4 cm−1andJ 2=−30.2 cm−1, confirming competing AFM coupling between the shared Cr3+center and the peripheral Cr3+ions of the dicubane cluster. The best simulation of the experimental data was obtained withJ 1=−20.0 cm−1andJ 2=−21.0 cm−1, in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ions as compared to the AFM exchange between the central and peripheral Cr3+ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal‐chalcogenide clusters into polymeric networks. -
Abstract The perovskite (BA)4[CuII(CuIInIII)0.5]Cl8(
1BA ; BA+=butylammonium) allows us to study the high‐pressure structural, optical, and transport properties of a mixed‐valence 2D perovskite. Compressing1BA reduces the onset energy of CuI/IIintervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of1BA increases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuIIperovskites achieve similar conductivity at ≈50 GPa. The solution‐state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuIIsingle perovskites and CuIInIIIdouble perovskites. -
Abstract The perovskite (BA)4[CuII(CuIInIII)0.5]Cl8(
1BA ; BA+=butylammonium) allows us to study the high‐pressure structural, optical, and transport properties of a mixed‐valence 2D perovskite. Compressing1BA reduces the onset energy of CuI/IIintervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of1BA increases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuIIperovskites achieve similar conductivity at ≈50 GPa. The solution‐state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuIIsingle perovskites and CuIInIIIdouble perovskites.