skip to main content

Title: SDSS-IV MaNGA: Exploring the Local Scaling Relations for N/O

We present, for the first time, the relationship between local stellar mass surface density, Σ*, and N/O derived from SDSS-IV MaNGA data, using a sample of 792,765 high signal-to-noise ratio star-forming spaxels. Using a combination of phenomenological modeling and partial correlation analysis, we find that Σ*alone is insufficient to predict the N/O in MaNGA spaxels and that there is an additional dependence on the local star formation rate surface density, ΣSFR. This effect is a factor of 3 stronger than the dependence of 12+log(O/H) on ΣSFR. Surprisingly, we find that the local N/O scaling relations also depend on the total galaxy stellar mass at fixed Σ*and the galaxy size at fixed stellar mass. We find that more compact galaxies are more nitrogen rich, even when Σ*and ΣSFRare controlled for. We show that ∼50% of the variance of N/O is explained by the total stellar mass and size. Thus, the evolution of nitrogen in galaxies is set by more than just local effects and does not simply track the buildup of oxygen in galaxies. The precise form of the N/O–O/H relation is therefore sensitive to the sample of galaxies from which it is derived. This result casts doubt on the more » universal applicability of nitrogen-based strong-line metallicity indicators derived in the local universe.

« less
; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 160
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this

    We investigate the origin of rare star formation in an otherwise red-and-dead population of S0 galaxies, using spatially resolved spectroscopy. Our sample consists of 120 low redshift (z < 0.1) star-forming S0 (SF-S0) galaxies from the SDSS-IV MaNGA DR15. We have selected this sample after a visual inspection of deep images from the DESI Legacy Imaging Surveys DR9 and the Subaru/HSC-SSP survey PDR3 to remove contamination from spiral galaxies. We also construct two control samples of star-forming spirals (SF-Sps) and quenched S0s (Q-S0s) to explore their evolutionary link with the star-forming S0s. To study star formation at resolved scales, we use dust-corrected H α luminosity and stellar density (Σ⋆) maps to construct radial profiles of star formation rate (SFR) surface density (ΣSFR) and specific SFR (sSFR). Examining these radial profiles, we find that star formation in SF-S0s is centrally dominated as opposed to disc-dominated star formation in spirals. We also compared various global (size–mass relation, bulge-to-total luminosity ratio) and local (central stellar velocity dispersion) properties of SF-S0s to those of the control sample galaxies. We find that SF-S0s are structurally similar to the quenched S0s and are different from star-forming spirals. We infer that SF-S0s are unlikely to be fadingmore »spirals. Inspecting stellar and gas velocity maps, we find that more than $50{{\ \rm per\ cent}}$ of the SF-S0 sample shows signs of recent galaxy interactions such as kinematic misalignment, counter-rotation, and unsettled kinematics. Based on these results, we conclude that in our sample of SF-S0s, star formation has been rejuvenated, with minor mergers likely to be a major driver.

    « less
  2. Abstract

    We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate some of the key factors responsible for the elevated ionization parameters (U) inferred for high-redshift galaxies, focusing in particular on the role of star-formation-rate surface density (ΣSFR). Using a sample of 317 galaxies with spectroscopic redshiftszspec≃ 1.9–3.7, we construct composite rest-frame optical spectra in bins of ΣSFRand infer electron densities,ne, using the ratio of the [Oii]λλ3727, 3730 doublet. Our analysis suggests a significant (≃3σ) correlation betweenneand ΣSFR. We further find significant correlations betweenUand ΣSFRfor composite spectra of a subsample of 113 galaxies, and for a smaller sample of 25 individual galaxies with inferences ofU. The increase inne—and possibly also the volume filling factor of dense clumps in Hiiregions—with ΣSFRappear to be important factors in explaining the relationship betweenUand ΣSFR. Further, the increase inneand SFR with redshift at a fixed stellar mass can account for most of the redshift evolution ofU. These results suggest that the gas density, which setsneand the overall level of star formation activity, may play a more important role than metallicity evolution in explaining the elevated ionization parameters of high-redshift galaxies.

  3. Abstract

    We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲z≲ 2.6 (zmean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass oflog(M*/M)med=8.290.43+0.51and a median star formation rate ofSFRHαmed=2.251.26+2.15Myr1. We measure the faint electron-temperature-sensitive [Oiii]λ4363 emission line at 2.5σ(4.1σ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of12+log(O/H)direct=7.880.22+0.25(0.150.06+0.12Z). We investigate the applicability at highzof locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM*, our composite is well represented by thez∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories(log(M*/M)med=8.920.22+0.31), we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, atmore »fixedM*and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii]λ3729/[Oii]λ3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density ofne=10+215cm3(ne=10+74cm3) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz∼ 2.

    « less
  4. ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $\Delta \rm log(\rm O/H) \sim 0.25$ dex at M*< $10^{9.75}\, \mathrm{M}_{\odot }$ down to $\Delta \rm log(\rm O/H) \sim 0.05$ at M* ≳ $10^{10.5}\, \mathrm{M}_{\odot }$. In contrast, the O3N2-based MZR shows a constant offset of $\Delta \rm log(\rm O/H) \sim 0.30$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$\log (\rm O3N2)$ relations. We find an anticorrelation between $\log (\rm O/H)$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5more »stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $\log (\rm SFR / M_{\odot } \, yr^{-1})$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope.« less
  5. ABSTRACT We analyse the rest-optical emission-line spectra of z ∼ 2.3 star-forming galaxies in the complete MOSFIRE Deep Evolution Field (MOSDEF) survey. In investigating the origin of the well-known offset between the sequences of high-redshift and local galaxies in the [O iii]λ5008/Hβ versus [N ii]λ6585/Hα (‘[N ii] BPT’) diagram, we define two populations of z ∼ 2.3 MOSDEF galaxies. These include the high population that is offset towards higher [O iii]λ5008/Hβ and/or [N ii]λ6585/Hα with respect to the local SDSS sequence and the low population that overlaps the SDSS sequence. These two groups are also segregated within the [O  iii]λ5008/Hβ versus [S ii]λλ6718,6733/Hα and the [O iii]λλ4960,5008/[O ii ]λλ3727,3730 (O32) versus ([O  iii]λλ4960,5008+[O ii]λλ3727,3730)/Hβ (R23) diagrams, which suggests qualitatively that star-forming regions in the more offset galaxies are characterized by harder ionizing spectra at fixed nebular oxygen abundance. We also investigate many galaxy properties of the split sample and find that the high sample is on average smaller in size and less massive, but has higher specific star formation rate (SFR) and SFR surface density values and is slightly younger compared to the low population. From Cloudy+BPASS photoionization models, we estimate that the high population has a lower stellar metallicity (i.e. harder ionizing spectrum) but slightly higher nebular metallicity and higher ionizationmore »parameter compared to the low population. While the high population is more α-enhanced (i.e. higher α/Fe) than the low population, both samples are significantly more α-enhanced compared to local star-forming galaxies with similar rest-optical line ratios. These differences must be accounted for in all high-redshift star-forming galaxies – not only those ‘offset’ from local excitation sequences.« less