skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrated Quadrant Analysis: A New Method for Analyzing Turbulent Coherent Structures
Abstract Integrated quadrant analysis is a novel technique to identify and to characterize the trajectory and strength of turbulent coherent structures in the atmospheric surface layer. By integrating the three-dimensional velocity field characterized by traditional quadrant analysis with respect to time, the trajectory history of individual coherent structures can be preserved with Eulerian turbulence measurements. We develop a method to identify the ejection phase of coherent structures based on turbulence kinetic energy (TKE). Identifying coherent structures within a time series using TKE performs better than identifying them with the streamwise and vertical velocity components because some coherent structures are dominated by the cross-stream velocity component as they pass the sensor. By combining this identification method with the integrated quadrant analysis, one can animate or plot the trajectory of individual coherent structures from high-frequency velocity measurements. This procedure links a coherent ejection with the subsequent sweep and quiescent period in time to visualize and quantify the strength and the duration of a coherent structure. We develop and verify the method of integrated quadrant analysis with data from two field studies: the Eclipse Boundary Layer Experiment (EBLE) in Corvallis, Oregon in August 2017 (grass field) and the Vertical Cherry Array Experiment (VACE) in Linden, California in November 2019 (cherry orchard). The combined TKE identification method and integrated quadrant analysis are promising additions to conditional sampling techniques and coherent structure characterization because the identify coherent structures and couple the sweep and ejection components in space. In an orchard (VACE), integrated quadrant analysis verifies each coherent structure is dominated by a sweep. Conversely, above the roughness sublayer (EBLE), each coherent structure is dominated by an ejection.  more » « less
Award ID(s):
1848019
PAR ID:
10367209
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Boundary-Layer Meteorology
Volume:
184
Issue:
1
ISSN:
0006-8314
Page Range / eLocation ID:
p. 45-69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The atmospheric boundary layer (ABL) is a highly turbulent geophysical flow, which has chaotic and often too complex dynamics to unravel from limited data. Characterizing coherent turbulence structures in complex ABL flows under various atmospheric regimes is not systematically well established yet. This study aims to bridge this gap using large eddy simulations (LESs), Koopman theory, and unsupervised classification techniques. To this end, eight LESs of different convective, neutral, and unsteady ABLs are conducted. As the ratio of buoyancy to shear production increases, the turbulence structures change from roll vortices to convective cells. The quadrant analysis indicated that as this ratio increases, the sweep and ejection events decrease, and inward/outward interactions increase. The Koopman mode decomposition (KMD) is then used to characterize their turbulence structures. Our results showed that KMD can reveal non-trivial modes of highly turbulent ABL flows (e.g., transverse to the mean flow direction) and can reconstruct the primary dynamics of ABLs even under unsteady conditions with only ∼5% of the modes. We attributed the detected modes to the imposed pressure gradient (shear), Coriolis (inertial oscillations), and buoyancy (convection) forces by conducting novel timescale and quadrant analyses. We then applied the convolutional neural network combined with the K-means clustering to group the Koopman modes. This approach is displacement and rotation invariant, which allows efficiently reducing the number of modes that describe the overall ABL dynamics. Our results provide new insights into the dynamics of ABLs and present a systematic data-driven method to characterize their complex spatiotemporal patterns. 
    more » « less
  2. The momentum and energy exchanges at the ocean surface are central factors determining the sea state, weather patterns and climate. To investigate the effects of surface waves on the air–sea energy exchanges, we analyse high-resolution laboratory measurements of the airflow velocity acquired above wind-generated surface waves using the particle image velocimetry technique. The velocity fields were further decomposed into the mean, wave-coherent and turbulent components, and the corresponding energy budgets were explored in detail. We specifically focused on the terms of the budget equations that represent turbulence production, wave production and wave–turbulence interactions. Over wind waves, the turbulent kinetic energy (TKE) production is positive at all heights with a sharp peak near the interface, indicating the transfer of energy from the mean shear to the turbulence. Away from the surface, however, the TKE production approaches zero. Similarly, the wave kinetic energy (WKE) production is positive in the lower portion of the wave boundary layer (WBL), representing the transfer of energy from the mean flow to the wave-coherent field. In the upper part of the WBL, WKE production becomes slightly negative, wherein the energy is transferred from the wave perturbation to the mean flow. The viscous and Stokes sublayer heights emerge as natural vertical scales for the TKE and WKE production terms, respectively. The interactions between the wave and turbulence perturbations show an energy transfer from the wave to the turbulence in the bulk of the WBL and from the turbulence to the wave in a thin layer near the interface. 
    more » « less
  3. Abstract This study analyzes observations collected by multilevel towers to estimate turbulence parameters in the atmospheric surface layer of two landfalling tropical cyclones (TCs). The momentum flux, turbulent kinetic energy (TKE) and dissipation rate increase with the wind speed independent of surface types. However, the momentum flux and TKE are much larger over land than over the coastal ocean at a given wind speed range. The vertical eddy diffusivity is directly estimated using the momentum flux and strain rate, which more quickly increases with the wind speed over a rougher surface. Comparisons of the eddy diffusivity estimated using the direct flux method and that using the friction velocity and height show good agreement. On the other hand, the traditional TKE method overestimates the eddy diffusivity compared to the direct flux method. The scaling coefficients in the TKE method are derived for the two different surface types to better match with the vertical eddy diffusivity based on the direct flux method. Some guidance to improve vertical diffusion parameterizations for TC landfall forecasts in weather simulations are also provided. 
    more » « less
  4. Abstract Velocity and forces on individual plants were measured within an emergent canopy with real plant morphology and used to develop predictions for the vertical profiles of velocity and turbulent kinetic energy (TKE). Two common plant species,Typha latifoliaandRotala indica, with distinctive morphology, were considered.Typhahas leaves bundled at the base, andRotalahas leaves distributed over the length of the central stem. Compared to conditions with a bare bed and the same velocity, theTKEwithin both canopies was enhanced. For theTyphacanopy, for which the frontal area increased with distance from the bed, the velocity, integral length‐scale, andTKEall decreased with distance from the bed. For theRotala, which had a vertically uniform distribution of biomass, the velocity, integral length‐scale, andTKEwere also vertically uniform. A turbulence model previously developed for random arrays of rigid cylinders was modified to predict both the vertical distribution and the channel‐average ofTKEby defining the relationship between the integral length‐scale and plant morphology. The velocity profile can also be predicted from the plant morphology. Combining with the new turbulence model, theTKEprofile was predicted from the channel‐average velocity and plant frontal area. 
    more » « less
  5. Abstract Observational data from two field campaigns in the Amazon forest were used to study the vertical structure of turbulence above the forest. The analysis was performed using the reduced turbulent kinetic energy (TKE) budget and its associated two-dimensional phase space. Results revealed the existence of two regions within the roughness sublayer in which the TKE budget cannot be explained by the canonical flat-terrain TKE budgets in the canopy roughness sublayer or in the lower portion of the convective ABL. Data analysis also suggested that deviations from horizontal homogeneity have a large contribution to the TKE budget. Results from LES of a model canopy over idealized topography presented similar features, leading to the conclusion that flow distortions caused by topography are responsible for the observed features in the TKE budget. These results support the conclusion that the boundary layer above the Amazon forest is strongly impacted by the gentle topography underneath. 
    more » « less