skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Science of Visual Data Communication: What Works
Effectively designed data visualizations allow viewers to use their powerful visual systems to understand patterns in data across science, education, health, and public policy. But ineffectively designed visualizations can cause confusion, misunderstanding, or even distrust—especially among viewers with low graphical literacy. We review research-backed guidelines for creating effective and intuitive visualizations oriented toward communicating data to students, coworkers, and the general public. We describe how the visual system can quickly extract broad statistics from a display, whereas poorly designed displays can lead to misperceptions and illusions. Extracting global statistics is fast, but comparing between subsets of values is slow. Effective graphics avoid taxing working memory, guide attention, and respect familiar conventions. Data visualizations can play a critical role in teaching and communication, provided that designers tailor those visualizations to their audience.  more » « less
Award ID(s):
1901485
PAR ID:
10367215
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Psychological Science in the Public Interest
Volume:
22
Issue:
3
ISSN:
1529-1006
Page Range / eLocation ID:
p. 110-161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The visual system evolved and develops to process the scenes, faces, and objects of the natural world, but people adapt this powerful system to process data within an artificial world of visualizations. To extract patterns in data from these artificial displays, viewers appear to use at least three perceptual tools, including a tool that extracts global statistics, one that extracts shapes within the data, and one that produces sentence-like comparisons. A better understanding of the power, limits, and deployment of these tools would lead to better guidelines for designing effective data displays. 
    more » « less
  2. Data graphics can be a powerful aid to decision-making—if they are designed to mesh well with human vision and understanding. Perceiving data values can be more precise for some graphical types, such as a scatterplot, and less precise for others, such as a heatmap. The eye can extract some types of statistics from large arrays in an eyeblink, as quickly as recognizing an object or face. But perceiving some patterns in visualized numbers—particularly comparisons within a dataset—is slow and effortful, unfolding over a series of operations that are guided by attention and previous experience. Effective data graphics map important messages onto visual patterns that are easily extracted, likely to be attended, and as consistent as possible with the audience’s previous experience. User-centered design methods, which rely on iteration and experimentation to improve a design, are critical tools for creating effective data visualizations. 
    more » « less
  3. While we typically focus on data visualization as a tool for facilitating cognitive tasks (e.g. learning facts, making decisions), we know relatively little about their second-order impacts on our opinions, attitudes, and values. For example, could design or framing choices interact with viewers' social cognitive biases in ways that promote political polarization? When reporting on U.S. attitudes toward public policies, it is popular to highlight the gap between Democrats and Republicans (e.g. with blue vs red connected dot plots). But these charts may encourage social-normative conformity, influencing viewers' attitudes to match the divided opinions shown in the visualization. We conducted three experiments examining visualization framing in the context of social conformity and polarization. Crowdworkers viewed charts showing simulated polling results for public policy proposals. We varied framing (aggregating data as non-partisan “All US Adults,” or partisan “Democrat” / “Republican”) and the visualized groups' support levels. Participants then reported their own support for each policy. We found that participants' attitudes biased significantly toward the group attitudes shown in the stimuli and this can increase inter-party attitude divergence. These results demonstrate that data visualizations can induce social conformity and accelerate political polarization. Choosing to visualize partisan divisions can divide us further. 
    more » « less
  4. Scatterplots commonly use multiple visual channels to encode multivariate datasets. Such visualizations often use size, shape, and color as these dimensions are considered separable--dimensions represented by one channel do not significantly interfere with viewers' abilities to perceive data in another. However, recent work shows the size of marks significantly impacts color difference perceptions, leading to broader questions about the separability of these channels. In this paper, we present a series of crowdsourced experiments measuring how mark shape, size, and color influence data interpretation in multiclass scatterplots. Our results indicate that mark shape significantly influences color and size perception, and that separability among these channels functions asymmetrically: shape more strongly influences size and color perceptions in scatterplots than size and color influence shape. Models constructed from the resulting data can help designers anticipate viewer perceptions to build more effective visualizations. 
    more » « less
  5. Abstract MotivationDisplaying proportional data across many spatially resolved coordinates is a challenging but important data visualization task, particularly for spatially resolved transcriptomics data. Scatter pie plots are one type of commonly used data visualization for such data but present perceptual challenges that may lead to difficulties in interpretation. Increasing the visual saliency of such data visualizations can help viewers more accurately identify proportional trends and compare proportional differences across spatial locations. ResultsWe developed scatterbar, an open-source R package that extends ggplot2, to visualize proportional data across many spatially resolved coordinates using scatter stacked bar plots. We apply scatterbar to visualize deconvolved cell-type proportions from a spatial transcriptomics dataset of the adult mouse brain to demonstrate how scatter stacked bar plots can enhance the distinguishability of proportional distributions compared to scatter pie plots. Availability and implementationscatterbar is available on CRAN https://cran.r-project.org/package=scatterbar with additional documentation and tutorials at https://jef.works/scatterbar/. 
    more » « less