skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Boost-RS: boosted embeddings for recommender systems and its application to enzyme–substrate interaction prediction
Abstract MotivationDespite experimental and curation efforts, the extent of enzyme promiscuity on substrates continues to be largely unexplored and under documented. Providing computational tools for the exploration of the enzyme–substrate interaction space can expedite experimentation and benefit applications such as constructing synthesis pathways for novel biomolecules, identifying products of metabolism on ingested compounds, and elucidating xenobiotic metabolism. Recommender systems (RS), which are currently unexplored for the enzyme–substrate interaction prediction problem, can be utilized to provide enzyme recommendations for substrates, and vice versa. The performance of Collaborative-Filtering (CF) RSs; however, hinges on the quality of embedding vectors of users and items (enzymes and substrates in our case). Importantly, enhancing CF embeddings with heterogeneous auxiliary data, specially relational data (e.g. hierarchical, pairwise or groupings), remains a challenge. ResultsWe propose an innovative general RS framework, termed Boost-RS that enhances RS performance by ‘boosting’ embedding vectors through auxiliary data. Specifically, Boost-RS is trained and dynamically tuned on multiple relevant auxiliary learning tasks Boost-RS utilizes contrastive learning tasks to exploit relational data. To show the efficacy of Boost-RS for the enzyme–substrate prediction interaction problem, we apply the Boost-RS framework to several baseline CF models. We show that each of our auxiliary tasks boosts learning of the embedding vectors, and that contrastive learning using Boost-RS outperforms attribute concatenation and multi-label learning. We also show that Boost-RS outperforms similarity-based models. Ablation studies and visualization of learned representations highlight the importance of using contrastive learning on some of the auxiliary data in boosting the embedding vectors. Availability and implementationA Python implementation for Boost-RS is provided at https://github.com/HassounLab/Boost-RS. The enzyme-substrate interaction data is available from the KEGG database (https://www.genome.jp/kegg/).  more » « less
Award ID(s):
1909536
PAR ID:
10367291
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
38
Issue:
10
ISSN:
1367-4803
Page Range / eLocation ID:
p. 2832-2838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationWhile traditionally utilized for identifying site-specific metabolic activity within a compound to alter its interaction with a metabolizing enzyme, predicting the site-of-metabolism (SOM) is essential in analyzing the promiscuity of enzymes on substrates. The successful prediction of SOMs and the relevant promiscuous products has a wide range of applications that include creating extended metabolic models (EMMs) that account for enzyme promiscuity and the construction of novel heterologous synthesis pathways. There is therefore a need to develop generalized methods that can predict molecular SOMs for a wide range of metabolizing enzymes. ResultsThis article develops a Graph Neural Network (GNN) model for the classification of an atom (or a bond) being an SOM. Our model, GNN-SOM, is trained on enzymatic interactions, available in the KEGG database, that span all enzyme commission numbers. We demonstrate that GNN-SOM consistently outperforms baseline machine learning models, when trained on all enzymes, on Cytochrome P450 (CYP) enzymes, or on non-CYP enzymes. We showcase the utility of GNN-SOM in prioritizing predicted enzymatic products due to enzyme promiscuity for two biological applications: the construction of EMMs and the construction of synthesis pathways. Availability and implementationA python implementation of the trained SOM predictor model can be found at https://github.com/HassounLab/GNN-SOM. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract MotivationAccurately predicting the likelihood of interaction between two objects (compound–protein sequence, user–item, author–paper, etc.) is a fundamental problem in Computer Science. Current deep-learning models rely on learning accurate representations of the interacting objects. Importantly, relationships between the interacting objects, or features of the interaction, offer an opportunity to partition the data to create multi-views of the interacting objects. The resulting congruent and non-congruent views can then be exploited via contrastive learning techniques to learn enhanced representations of the objects. ResultsWe present a novel method, Contrastive Stratification for Interaction Prediction (CSI), to stratify (partition) a dataset in a manner that can be exploited via Contrastive Multiview Coding to learn embeddings that maximize the mutual information across congruent data views. CSI assigns a key and multiple views to each data point, where data partitions under a particular key form congruent views of the data. We showcase the effectiveness of CSI by applying it to the compound–protein sequence interaction prediction problem, a pressing problem whose solution promises to expedite drug delivery (drug–protein interaction prediction), metabolic engineering, and synthetic biology (compound–enzyme interaction prediction) applications. Comparing CSI with a baseline model that does not utilize data stratification and contrastive learning, and show gains in average precision ranging from 13.7% to 39% using compounds and sequences as keys across multiple drug–target and enzymatic datasets, and gains ranging from 16.9% to 63% using reaction features as keys across enzymatic datasets. Availability and implementationCode and dataset available at https://github.com/HassounLab/CSI. 
    more » « less
  3. Abstract Despite significant advances in reconstructing genome-scale metabolic networks, the understanding of cellular metabolism remains incomplete for many organisms. A promising approach for elucidating cellular metabolism is analysing the full scope of enzyme promiscuity, which exploits the capacity of enzymes to bind to non-annotated substrates and generate novel reactions. To guide time-consuming costly experimentation, different computational methods have been proposed for exploring enzyme promiscuity. One relevant algorithm is PROXIMAL, which strongly relies on KEGG to define generic reaction rules and link specific molecular substructures with associated chemical transformations. Here, we present a completely new pipeline, PROXIMAL2, which overcomes the dependency on KEGG data. In addition, PROXIMAL2 introduces two relevant improvements with respect to the former version: i) correct treatment of multi-step reactions and ii) tracking of electric charges in the transformations. We compare PROXIMAL and PROXIMAL2 in recovering annotated products from substrates in KEGG reactions, finding a highly significant improvement in the level of accuracy. We then applied PROXIMAL2 to predict degradation reactions of phenolic compounds in the human gut microbiota. The results were compared to RetroPath RL, a different and relevant enzyme promiscuity method. We found a significant overlap between these two methods but also complementary results, which open new research directions into this relevant question in nutrition. 
    more » « less
  4. IntroductionCognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear. MethodsAccordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome. Results and discussionFollowing 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis. 
    more » « less
  5. Abstract BackgroundThe number of applications of deep learning algorithms in bioinformatics is increasing as they usually achieve superior performance over classical approaches, especially, when bigger training datasets are available. In deep learning applications, discrete data, e.g. words or n-grams in language, or amino acids or nucleotides in bioinformatics, are generally represented as a continuous vector through an embedding matrix. Recently, learning this embedding matrix directly from the data as part of the continuous iteration of the model to optimize the target prediction – a process called ‘end-to-end learning’ – has led to state-of-the-art results in many fields. Although usage of embeddings is well described in the bioinformatics literature, the potential of end-to-end learning for single amino acids, as compared to more classical manually-curated encoding strategies, has not been systematically addressed. To this end, we compared classical encoding matrices, namely one-hot, VHSE8 and BLOSUM62, to end-to-end learning of amino acid embeddings for two different prediction tasks using three widely used architectures, namely recurrent neural networks (RNN), convolutional neural networks (CNN), and the hybrid CNN-RNN. ResultsBy using different deep learning architectures, we show that end-to-end learning is on par with classical encodings for embeddings of the same dimension even when limited training data is available, and might allow for a reduction in the embedding dimension without performance loss, which is critical when deploying the models to devices with limited computational capacities. We found that the embedding dimension is a major factor in controlling the model performance. Surprisingly, we observed that deep learning models are capable of learning from random vectors of appropriate dimension. ConclusionOur study shows that end-to-end learning is a flexible and powerful method for amino acid encoding. Further, due to the flexibility of deep learning systems, amino acid encoding schemes should be benchmarked against random vectors of the same dimension to disentangle the information content provided by the encoding scheme from the distinguishability effect provided by the scheme. 
    more » « less