skip to main content

Title: Transparent, Photothermal, and Icephobic Surfaces via Layer‐by‐Layer Assembly

Icing and frosting on transparent surfaces compromise visibility on various optical equipment and transparent infrastructures. It remains challenging to fabricate energy‐saving coatings for harvesting solar energy while maintaining high transparency. Here, transparent, photothermic, and icephobic composite surfaces composed of photothermal nanomaterials and polyelectrolytes via layer‐by‐layer assembly are designed and constructed. The positively‐charged polypyrrole nanoparticles and negatively‐charged poly(acrylic acid) are assembled as exemplary materials via electrostatic attractions. The optically transparent photothermal coatings are successfully fabricated and exhibited photothermal capabilities and light‐transmittance performance. Among the various coatings applied, the seven‐bilayer coating can increase the temperature by 35 °C under 1.9‐sun illumination, maintaining high transmittance (>60%) of visible light. With sunlight illumination at subzero temperatures (> −35 °C), the coatings show pronounced capabilities to inhibit freezing, melt accumulated frost, and decrease ice adhesion. Precisely, the icephobic surfaces remain free of frost at −35 °C as long as sunlight illumination is present; the accumulated frost melts rapidly within 300 s. The ice adhesion strength decreases to ≈0 kPa as the melted water acts as a lubricant. Furthermore, the negatively‐charged graphene oxide and positively‐charged poly(diallyldimethylammonium chloride) show their material diversity applicable in the coating fabrication.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The photothermal experiments on the incident light angle dependence are carried out using simulated solar light on thin films of both iron oxides (Fe3O4 and Fe3O4@Cu2-xS) and porphyrin compounds (chlorophyll and chlorophyllin). Fe3O4 and Fe3O4@Cu2-xS are synthesized using various solution methods that produce mono-dispersed nanoparticles on the order of 10 nm. Chlorophyll is extracted from fresh spinach and chlorophyllin sodium copper is a commercial product. These photothermal (PT) materials are dispersed in polymethyl methacrylate (PMMA) solutions and deposited on glass substrates via spin coating that result in clear and transparent thin films. The iron-oxide based thin films show distinctive absorption spectra; Fe3O4 exhibits a strong peak near UV and gradually decreases into the visible and NIR regions; the absorption of Fe3O4@Cu2-xS is similar in the UV region but shows a broad absorption in the NIR region. Both chlorophyll and chlorophyllin are characterized with absorption peaks near UV and NIR showing a “U”-shaped spectrum, ideally required for efficient solar harvest and high transparency in energy-efficient single-pane window applications. Upon coating of the transparent PT films on the window inner surfaces, solar irradiation induces the photothermal effect, consequently raising the film temperature. In this fashion, the thermal loss through the window can be significantly lowered by reducing the temperature difference between the window inner surface and the room interior, based on a new concept of so-called “optical thermal insulation” (OTI) without any intervention medium, such as air/argon, as required in the glazing technologies. Single-panes are therefore possible to replace double- or triple panes. As OTI is inevitably affected by seasonal and daily sunlight changes, an incident light angle dependence of the photothermal effect is crucial in both thin film and window designs. It is found that the heating curves reach their maxima at small angles of incidence while the photothermal effect is considerably reduced at large angles. This angle dependence is well explained by light reflection by the thin film surface, however, deviated from what is predicted by the Fresnel’s law, attributable to non-ideal surfaces of the substrates. The angle dependence data provides an important reference for OTI that window exposure to sun is greater at winter solstice while that is considerably reduced in the summer. This conclusion indicates much enhanced solar harvesting and heat conversion via optically insulated windows in the winter season, resulting in much lower U-factors. 
    more » « less
  2. Abstract

    Shape morphing of stimuli‐responsive composite hydrogels has received considerable attention in different research fields. Although various multilayer structures with dissimilar materials are studied to achieve shape morphing, combining swellable hydrogel layers with non‐swellable layers results in issues with interface adhesion and structural integrity. In this study, single‐hydrogel‐based bilayer actuators comprising poly(N‐isopropylacrylamide) (PNIPAM) matrices and graphene oxide (GO)–PNIPAM hinges are presented. Upon temperature rising, the PNIPAM hydrogel acts as the passive layer due to the formation of dense microstructures near the surface (i.e., the skin layer effect), whereas the GO‐PNIPAM hydrogel functions as the active layer, maintaining porous due to structural modification by the presence of GO. Under light exposure, the GO‐PNIPAM hinges experience selective heating due to the photothermal effect of GO. Consequently, the resulting bilayer structures exhibit programmable dual‐responsive 3D shape morphing. Additionally, the folding kinetics of these actuators can be adjusted based on the applied stimulus (temperature changes or light), as they are driven by different mechanisms, the skin layer, or photothermal effects, respectively. Furthermore, the hinge‐based bilayer structures demonstrate walking and steering locomotion by light exposure. This approach can lead to advances in soft robotics, biomimetic systems, and autonomous soft actuators in hydrogel‐based systems.

    more » « less
  3. Abstract

    Tailoring thermal radiation using low‐infrared‐emissivity materials has drawn significant attention for diverse applications, such as passive radiative heating and thermal camouflage. However, the previously reported low‐infrared‐emissivity materials have the bottleneck of lacking independent control over visible optical properties. Here, a novel visibly transparent and infrared reflective (VTIR) coating by exploiting a nano‐mesh patterning strategy with an oxide–metal–oxide tri‐layer structure is reported. The VTIR coating shows simultaneously high transmittance in the visible region (>80% at 550 nm) and low emissivity in the mid‐infrared region (< 20% in 7–14 µm). The VTIR coating not only achieves a radiative heating effect of 6.6 °C for indoor conditions but also enables a synergetic effect with photothermal materials to keep human body warm at freezing temperatures for outdoor conditions, which is 10–15 °C warmer than normal cotton and Mylar film. Moreover, it demonstrates an excellent thermal camouflage effect at various temperatures (34–250 °C) and good compatibility with visible camouflage on the same object, making it ideal for both daytime and nighttime cloaking. With its unique and versatile spectral features, this novel VTIR design has great potential to make a significant impact on personal heat management and counter‐surveillance applications.

    more » « less
  4. A Photothermal Solar Tunnel Radiator (PSTR) is designed and developed by employing multiple transparent photothermal glass panels (TPGP). The primary objective is to pioneer a transformative approach to achieve energy-neutral building heating utilities, exemplified by a lab-scale "Photothermal Solar Box" (PSB) exclusively heated with TPGP under natural sunlight. The PSTR presents a novel paradigm for sustainable energy, enabling direct solar energy capture through transparent glass substrates with photothermal coatings. The high transparency of Fe3O4@Cu2-xS coated glass substrates enhance efficient solar harvesting and photothermal energy generation within the Photothermal Solar Box. The system demonstrates an impressive thermal energy output, reaching up to 9.1x105 joules with 8 photothermal panels in parallel. Even under colder conditions (ambient temperature: -10 °C), with accelerated heat loss, the interior temperatures of the PSB with partial thermal insulation achieve a commendable 35 °C, showcasing effective photothermal heating in cold weather. These findings indicate the system's resilience and efficiency in harnessing solar energy under diverse conditions, including partial cloudy weather. The initiative contributes to broader sustainability goals by providing a scalable and practical alternative to traditional solar heating methods, aligning with the global mission for a cleaner, greener future. 
    more » « less
  5. null (Ed.)
    The balance of bacterial populations in the human body is critical for human health. Researchers have aimed to control bacterial populations using antibiotic substrates. However, antibiotic materials that non-selectively kill bacteria can compromise health by eliminating beneficial bacteria, which leaves the body vulnerable to colonization by harmful pathogens. Due to their chemical tunablity and unique surface properties, graphene oxide (GO)-based materials – termed “functional graphenic materials” (FGMs) – have been previously designed to be antibacterial but have the capacity to actively adhere and instruct probiotics to maintain human health. Numerous studies have demonstrated that negatively and positively charged surfaces influence bacterial adhesion through electrostatic interactions with the negatively charged bacterial surface. We found that tuning the surface charge of FGMs provides an avenue to control bacterial attachment without compromising vitality. Using E. coli as a model organism for Gram-negative bacteria, we demonstrate that negatively charged Claisen graphene (CG), a reduced and carboxylated FGM, is bacterio-repellent through electrostatic repulsion with the bacterial surface. Though positively charged poly- l -lysine (PLL) is antibacterial when free in solution by inserting into the bacterial cell wall, here, we found that covalent conjugation of PLL to CG (giving PLL n -G) masks the antimicrobial activity of PLL by restricting polypeptide mobility. This allows the immobilized positive charge of the PLL n -Gs to be leveraged for E. coli adhesion through electrostatic attraction. We identified the magnitude of positive charge of the PLL n -G conjugates, which is modulated by the length of the PLL peptide, as an important parameter to tune the balance between the opposing forces of bacterial adhesion and proliferation. We also tested adhesion of Gram-positive B. subtilis to these FGMs and found that the effect of FGM charge is less pronounced. B. subtilis adheres nondiscriminatory to all FGMs, regardless of charge, but adhesion is scarce and localized. Overall, this work demonstrates that FGMs can be tuned to selectively control bacterial response, paving the way for future development of FGM-based biomaterials as bacterio-instructive scaffolds through careful design of FGM surface chemistry. 
    more » « less