skip to main content


Title: Identifying latent behavioural states in animal movement with M4, a nonparametric Bayesian method
Abstract

Understanding animal movement often relies upon telemetry and biologging devices. These data are frequently used to estimate latent behavioural states to help understand why animals move across the landscape. While there are a variety of methods that make behavioural inferences from biotelemetry data, some features of these methods (e.g. analysis of a single data stream, use of parametric distributions) may limit their generality to reliably discriminate among behavioural states.

To address some of the limitations of existing behavioural state estimation models, we introduce a nonparametric Bayesian framework called the mixed‐membership method for movement (M4), which is available within the open‐sourcebayesmoveR package. This framework can analyse multiple data streams (e.g. step length, turning angle, acceleration) without relying on parametric distributions, which may capture complex behaviours more successfully than current methods. We tested our Bayesian framework using simulated trajectories and compared model performance against two segmentation methods (behavioural change point analysis (BCPA) and segclust2d), one machine learning method [expectation‐maximization binary clustering (EMbC)] and one type of state‐space model [hidden Markov model (HMM)]. We also illustrated this Bayesian framework using movements of juvenile snail kitesRostrhamus sociabilisin Florida, USA.

The Bayesian framework estimated breakpoints more accurately than the other segmentation methods for tracks of different lengths. Likewise, the Bayesian framework provided more accurate estimates of behaviour than the other state estimation methods when simulations were generated from less frequently considered distributions (e.g. truncated normal, beta, uniform). Three behavioural states were estimated from snail kite movements, which were labelled as ‘encamped’, ‘area‐restricted search’ and ‘transit’. Changes in these behaviours over time were associated with known dispersal events from the nest site, as well as movements to and from possible breeding locations.

Our nonparametric Bayesian framework estimated behavioural states with comparable or superior accuracy compared to the other methods when step lengths and turning angles of simulations were generated from less frequently considered distributions. Since the most appropriate parametric distributions may not be obvious a priori, methods (such as M4) that are agnostic to the underlying distributions can provide powerful alternatives to address questions in movement ecology.

 
more » « less
Award ID(s):
2040819
NSF-PAR ID:
10367391
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
13
Issue:
2
ISSN:
2041-210X
Page Range / eLocation ID:
p. 432-446
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecological studies of global warming impacts have many constraints. Organisms are often exposed to higher temperatures for short periods of time, probably underestimating their ability to acclimate or adapt relative to slower but real rates of warming. Many studies also focus on a limited number of traits and miss the multifaceted effects that warming may have on organisms, from physiology to behaviour. Organisms exhibit different movement traits, some of which are primarily driven by metabolic processes and others by decision‐making, which should influence the extent to which temperature affects them.

    We collected snails from streams that have been differentially heated by geothermal activity for decades to determine how long‐term exposure to different temperatures affected their metabolism and movement. Additionally, we collected snails from a cold stream (5°C) and measured their metabolism and movement at higher temperatures (short‐term exposure). We used respirometry to measure metabolic rates and automated in situ image‐based tracking to quantify several movement traits from 5 to 21°C.

    Long‐term exposure to higher temperatures resulted in a greater thermal sensitivity of metabolic rate compared to snails exposed for short durations, highlighting the need for caution when conducting acute temperature exposures in global warming research. Average speed, which is largely driven by metabolism, also increased more with temperature for long‐term exposure compared to short‐term exposure. Movement traits we interpret as more decision‐based, such as time spent moving and trajectory shape, were less affected by temperature. Step length increased and step angle decreased at higher temperatures for both long‐ and short‐term exposure, resulting in overall straighter trajectories. The power‐law exponent of the step length distributions and fractal dimension of trajectories were independent of temperature, however, suggesting that snails retained the same movement strategy.

    The observed changes in snail movement at higher temperatures should lead to higher encounter rates and more efficient searching, providing a behavioural mechanism for stronger plant–herbivore interactions in warmer environments. Our research is among the first to show that temperature has contrasting effects on different movement traits, which may be determined by the metabolic contribution to those behaviours.

     
    more » « less
  2. Abstract

    Rapid advances in the field of movement ecology have led to increasing insight into both the population‐level abundance patterns and individual‐level behaviour of migratory species. Despite this progress, research questions that require scaling individual‐level understanding of the behaviour of migrating organisms to the population level remain difficult to investigate.

    To bridge this gap, we introduce a generalizable framework for training full‐annual cycle individual‐based models of migratory movements by combining information from tracking studies and species occurrence records. Focusing on migratory birds, we call this method: Models of Individual Movement of Avian Species (MIMAS). We implement MIMAS to design individual‐based models of avian migration that are trained using previously published weekly occurrence maps and fit via Approximate Bayesian Computation.

    MIMAS models leverage individual‐ and population‐level information to faithfully represent continental‐scale migration patterns. Models can be trained successfully for species even when little existing individual‐level data is available for parameterization by relying on population‐level information. In contrast to existing mathematical models of migration, MIMAS explicitly represents and estimates behavioural attributes of migrants. MIMAS can additionally be used to simulate movement over consecutive migration seasons, and models can be easily updated or validated as new empirical data on migratory behaviours becomes available.

    MIMAS can be applied to a variety of research questions that require representing individual movement at large scales. We demonstrate three applied uses for MIMAS: estimating population‐specific migratory phenology, predicting the spatial patterns and magnitude of ectoparasite dispersal by migrants, and simulating the spread of a pathogen across the annual cycle of a migrant species. Currently, MIMAS can easily be used to build models for hundreds of migratory landbird species but can also be adapted in the future to build models of other types of migratory animals.

     
    more » « less
  3. Abstract

    Metapopulation models include spatial population dynamics such as dispersion and migration between subpopulations. Integral projection models (IPMs) can include demographic rates as a function of size. Traditionally, metapopulation models do not included detailed populaiton models such as IPMs. In some situations, both local population dynamics (e.g. size‐based survival) and spatial dynamics are important.

    We present a Python package,MetaIPM, which places IPMs into a metapopulation framework, and allow users to readily construct and apply these models that combine local population dynamics within a metapopulation framework.

    MetaIPMincludes an IPM for each subpopulation that is connected to other subpopulations via a metapopulation movement model. These movements can include dispersion, migration or other patterns. The IPM can include for size‐specific demographic rates (e.g. survival, recruitment) as well as management actions, such as length‐based harvest (e.g. gear specific capture sizes, varying slot limits across political boundaries). The model also allows for changes in metapopulation connectivity between locations, such as a fish passage ladders to enhance movement or deterrents to reduce movement. Thus, resource managers can useMetaIPMto compare different management actions such as the harvest gear type (which can be length‐specific) and harvest locations.

    We demonstrate howMetaIPMmay be applied to inform managers seeking to limit the spread of an invasive species in a system with important metapopulation dynamics. Specifically, we compared removal lengths (all length fish versus longer fish only) for an invasive fish population in a fragmented, inland river system.MetaIPMallowed users to compare the importance of harvesting source populations away from the invasion front, as well as species at the invasion front. The model would also allow for future comparisons of different deterrent placement locations in the system.

    Moving beyond our example system, we describe howMetaIPMcan be applied to other species, systems and management approaches. TheMetaIPMpackages includes Jupyter Notebooks documenting the package as well as a second set of JupyterNotebooks showing the application of the package to our example system.

     
    more » « less
  4. Abstract

    Animal movement at localised scales is often modulated by competing pressures such as avoiding predators while acquiring resources and mates. The relative magnitude of these trade‐offs may affect males and females differently, often resulting in sex‐specific differences in movement.

    Sex‐biases in movement have been linked to mating systems (e.g. monogamy or polygamy) in birds and mammals; however, this relationship has received less attention among fishes. Using passive integrated transponder tags and a series of stationary antennas, we evaluated the movement dynamics of a small‐bodied, sexually dimorphic stream fishFundulus olivaceusover a 30‐day period in a fourth‐order tributary to the Pascagoula River in Mississippi (U.S.A.).

    We documented dissimilar sex‐specific movement behaviours at different spatial scales that were likely to be facilitated by differential resource demands and competitive pressures. Females exhibited an increased propensity to engage in longer, exploratory moves (>30 m); whereas most males remained active within an established territory, making few long‐distance longitudinal movements.

    Local activity levels (proportion of individuals moving) were positively related to density (manipulated during the study), and density was found to affect the magnitude of sex‐specific movement. In contrast to females, males increased local activity and movement distance at the reduced density, presumably to expand territory size or mate‐searching behaviours, suggesting local mate competition may suppress the movement distance of males.

    Despite some evidence substantiating a relationship between movement and mating system, our results suggest that the documented sex‐specific differences may be related to traits that co‐evolve with mating systems, rather than the mating system per se. Our findings also highlight the importance of spatial scale when evaluating patterns of sex‐biased movement tendencies.

     
    more » « less
  5. Abstract

    Selective logging is the primary cause of tropical forest degradation and is rapidly expanding worldwide. While the impacts of logging on species diversity and distributions are well understood, little is known about the effects of logging on animal behaviours central to individual fitness and population persistence.

    The song rate of breeding songbirds is a behavioural trait that is often positively associated with male density and used by conspecific females as an indicator of territory and male quality. Thus, contrasting logging‐induced adjustments in song rates of individual birds with population shifts may illuminate potential mechanisms underlying population distributions.

    We present a novel application of bioacoustic monitoring, integrating counts of individuals, songs and duets from single automated recording units (ARUs) withN‐mixture models, to estimate shifts in population parameters (occupancy, abundance) and singing behaviours (per‐capita song rates, per‐pair duet rates) of 32 Bornean songbird species with logging. We tested hypotheses on the relationships between adjustments in behavioural and population parameters with logging, and further tested the extent to which species traits predicted behavioural and population shifts.

    Adjustments to singing behaviour in 59 and 53% of species (57% of duetting species) were concordant with differences in occupancy and abundance respectively, such that species showing reduced populations with logging also produced fewer songs per‐capita, and vice versa. Species known to prefer undisturbed habitats and large‐bodied species showed the most negative effects of logging on singing behaviour and population distributions. Species known to exploit degraded habitats exhibited the opposite pattern. Subdued singing in logged forests by species of conservation concern suggests limited competition between territorial males in small populations and may also signal low‐quality territories.

    Synthesis and applications. We demonstrate that bioacoustic monitoring can be used to not only estimate important population parameters of occupancy and abundance across a diverse tropical songbird community, but also enables quantification of behaviours considered relevant to individual fitness, yet unobtainable with conventional methods (e.g. point counts). Bioacoustics provides a viable approach to reliable automated large‐scale monitoring of hyperdiverse tropical forest systems under logging operations and other land‐use pressures.

     
    more » « less