Multigenerational effects can have important and sex‐dependent effects on offspring. Sex allocation theory predicts that females should differentially invest in sons and daughters depending on sex‐specific fitness returns and costs of investment. Maternal stress‐relevant (glucocorticoid) hormones may be one mechanism driving this effect. We investigated how maternal stress hormones differentially affected sons and daughters by manipulating levels of the glucocorticoid, corticosterone (CORT), in gravid female eastern fence lizards (
The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female
- PAR ID:
- 10367398
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 31
- Issue:
- 1
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 185-196
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Sceloporus undulatus ) and quantifying reproductive investment and sex ratio of resulting clutches, and the mass, snout‐vent length, and body condition of sons versus daughters at hatching. We found no effect of maternal CORT‐treatment on the number or size of eggs laid or on the sex ratio of resulting offspring, but sons of CORT‐treated mothers were shorter, lighter, and of poorer body condition at hatching than were sons of control mothers. We found no difference in size or condition of daughters with maternal treatment. Our results suggest that maternal stress, mediated by elevations in maternal CORT concentrations, can have sex‐specific effects on offspring manifesting as lower investment in sons. -
Abstract Secondary sexual traits and associated behaviors can be influenced by environmental factors such as exposure to stressors. Such effects may be mediated by the physiological stress response, which is typified by the release of glucocorticoid hormones. The effects of glucocorticoids on sexual traits such as plumage and display coloration have most commonly been studied in isolation rather than in conjunction with other pertinent aspects of signalling, such as behavior and habitat use, though these have substantial potential to alter signal perception. Here we test the effects of corticosterone (CORT), a common glucocorticoid, on a secondary sexual trait (badge coloration) in male eastern fence lizards (
Sceloporus undulatus ), and behaviors associated with its expression. We show that neither baseline nor experimentally manipulated CORT levels were associated with badge coloration. Further, elevation of CORT levels in the field did not alter signalling or associated territorial behaviors. There was a trend for CORT-treatment to influence perch height selection, which may influence signal perception. We suggest that future studies investigating the effects of environmental stressors and associated physiological changes on secondary sexual traits should consider behaviors and ecology relevant to signal perception in order to best understand the influence of stressors in nature. -
ABSTRACT: Antibiotics in early life can promote adiposity via interactions with the gut microbiota. However, antibiotics represent only one possible route of antimicrobial exposure. Dietary preservatives exhibit antimicrobial activity, contain chemical structures accessible to microbial enzymes, and alter environmental conditions favoring specific microbial taxa. Therefore, preservatives that retain bioactivity in the gut might likewise alter the gut microbiota and host metabolism. Here we conduct in vitro, ex vivo, and in vivo experiments in mice to test the effects of preservatives on the gut microbiota and host physiology. We screened common dietary preservatives against a panel of human gut isolates and whole fecal communities, finding that preservatives strongly altered microbial growth and community structure. We exposed mice to diet-relevant doses of 4 preservatives [acetic acid, BHA (butylated hydroxyanisole), EDTA (ethylenediaminetetraacetic acid) and sodium sulfite], which each induced compound-specific changes in gut microbiota composition. Finally, we compared the long-term effects of early-life EDTA and low-dose antibiotic (ampicillin) exposure. EDTA exposure modestly reduced nutrient absorption and cecal acetate in both sexes, resulting in lower adiposity in females despite greater food intake. Females exposed to ampicillin also exhibited lower adiposity, along with larger brains and smaller livers. By contrast, in males, ampicillin exposure generally increased energy harvest and decreased energy expenditure, resulting in higher adiposity. Our results highlight the potential for everyday doses of common dietary preservatives to affect the gut microbiota and impact metabolism differently in males and females. Thus, despite their generally-regarded-as-safe designation, preservatives could have unintended consequences for consumer health.more » « less
-
Abstract The gut microbiome impacts host health and fitness, in part through the diversification of gut metabolic function and pathogen protection. Elevations in glucocorticoids (GCs) appear to reduce gut microbiome diversity in experimental studies, suggesting that a loss of microbial diversity may be a negative consequence of increased GCs. However, given that ecological factors like food availability and population density may independently influence both GCs and microbial diversity, understanding how these factors structure the GC-microbiome relationship is crucial to interpreting its significance in wild populations. Here, we used an ecological framework to investigate the relationship between GCs and gut microbiome diversity in wild North American red squirrels (
Tamiasciurus hudsonicus ). As expected, higher GCs predicted lower gut microbiome diversity and an increase in metabolic taxa. Surprisingly, but in line with prior empirical studies on wild animals, gastrointestinal pathogens decreased as GCs increased. Both dietary heterogeneity and an upcoming food pulse exhibited direct effects on gut microbiome diversity, whereas conspecific density and reproductive activity impacted diversity indirectly via changes in host GCs. Our results provide evidence of a gut–brain axis in wild red squirrels and highlight the importance of situating the GC-gut microbiome relationship within an ecological framework. -
Abstract The gut microbiome is a plastic phenotype; gut microbial composition is highly variable across an individual host's lifetime and between host social groups, and this variation has consequences for host health. However, we do not yet fully understand how longitudinal microbial dynamics and their social drivers may be influenced by ecological stressors, such as habitat degradation. Answering these questions is difficult in most wild animal systems, as it requires long‐term collections of matched host, microbiome, and environmental trait data. To test if temporal and social influences on microbiome composition differ by the history of human disturbance, we leveraged banked, desiccated fecal samples collected over 5 months in 2004 from two ecologically distinct populations of wild, red‐bellied lemurs (
Eulemur rubriventer ) that are part of a long‐term study system. We found that social group explained more variation in microbiome composition than host population membership did, and that temporal variation in common microbial taxa was similar between populations, despite differences in history of human disturbance. Furthermore, we found that social group membership and collection month were both more important than individual lemur identity. Taken together, our results suggest that synchronized environments use can lead to synchronized microbial dynamics over time, even between habitats of varying quality, and that desiccated samples could become a viable approach for studying primate gut microbiota. Our work opens the door for other projects to utilize historic biological sample data sets to answer novel temporal microbiome questions in an ecological context.