skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: A Genome for Bidens hawaiensis : A Member of a Hexaploid Hawaiian Plant Adaptive Radiation
Abstract

The plant genus Bidens (Asteraceae or Compositae; Coreopsidae) is a species-rich and circumglobally distributed taxon. The 19 hexaploid species endemic to the Hawaiian Islands are considered an iconic example of adaptive radiation, of which many are imperiled and of high conservation concern. Until now, no genomic resources were available for this genus, which may serve as a model system for understanding the evolutionary genomics of explosive plant diversification. Here, we present a high-quality reference genome for the Hawaiʻi Island endemic species B. hawaiensis A. Gray reconstructed from long-read, high-fidelity sequences generated on a Pacific Biosciences Sequel II System. The haplotype-aware, draft genome assembly consisted of ~6.67 Giga bases (Gb), close to the holoploid genome size estimate of 7.56 Gb (±0.44 SD) determined by flow cytometry. After removal of alternate haplotigs and contaminant filtering, the consensus haploid reference genome was comprised of 15 904 contigs containing ~3.48 Gb, with a contig N50 value of 422 594. The high interspersed repeat content of the genome, approximately 74%, along with hexaploid status, contributed to assembly fragmentation. Both the haplotype-aware and consensus haploid assemblies recovered >96% of Benchmarking Universal Single-Copy Orthologs. Yet, the removal of alternate haplotigs did not substantially reduce the proportion of duplicated benchmarking genes (~79% vs. ~68%). This reference genome will support future work on the speciation process during adaptive radiation, including resolving evolutionary relationships, determining the genomic basis of trait evolution, and supporting ongoing conservation efforts.

 
more » « less
Award ID(s):
1920304
PAR ID:
10367430
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Heredity
Volume:
113
Issue:
2
ISSN:
0022-1503
Format(s):
Medium: X Size: p. 205-214
Size(s):
p. 205-214
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Penstemon is the most speciose flowering plant genus endemic to North America. Penstemon species’ diverse morphology and adaptation to various environments have made them a valuable model system for studying evolution. Here, we report the first full reference genome assembly and annotation for Penstemon davidsonii. Using PacBio long-read sequencing and Hi-C scaffolding technology, we constructed a de novo reference genome of 437,568,744 bases, with a contig N50 of 40 Mb and L50 of 5. The annotation includes 18,199 gene models, and both the genome and transcriptome assembly contain over 95% complete eudicot BUSCOs. This genome assembly will serve as a valuable reference for studying the evolutionary history and genetic diversity of the Penstemon genus.

     
    more » « less
  2. Abstract Background Calcareous outcrops, rocky areas composed of calcium carbonate (CaCO 3 ), often host a diverse, specialized, and threatened biomineralizing fauna. Despite the repeated evolution of physiological and morphological adaptations to colonize these mineral rich substrates, there is a lack of genomic resources for calcareous rock endemic species. This has hampered our ability to understand the genomic mechanisms underlying calcareous rock specialization and manage these threatened species. Results Here, we present a new draft genome assembly of the threatened limestone endemic land snail Oreohelix idahoensis and genome skim data for two other Oreohelix species. The O. idahoensis genome assembly (scaffold N50: 404.19 kb; 86.6% BUSCO genes) is the largest (~ 5.4 Gb) and most repetitive mollusc genome assembled to date (85.74% assembly size). The repetitive landscape was unusually dominated by an expansion of long terminal repeat (LTR) transposable elements (57.73% assembly size) which have shaped the evolution genome size, gene composition through retrotransposition of host genes, and ectopic recombination. Genome skims revealed repeat content is more than 2–3 fold higher in limestone endemic O. idahoensis compared to non-calcareous Oreohelix species. Gene family size analysis revealed stress and biomineralization genes have expanded significantly in the O. idahoensis genome . Conclusions Hundreds of threatened land snail species are endemic to calcareous rock regions but there are very few genomic resources available to guide their conservation or determine the genomic architecture underlying CaCO 3 resource specialization. Our study provides one of the first high quality draft genomes of a calcareous rock endemic land snail which will serve as a foundation for the conservation genomics of this threatened species and for other groups. The high proportion and activity of LTRs in the O. idahoensis genome is unprecedented in molluscan genomics and sheds new light how transposable element content can vary across molluscs. The genomic resources reported here will enable further studies of the genomic mechanisms underlying calcareous rock specialization and the evolution of transposable element content across molluscs. 
    more » « less
  3. Abstract Comparisons of high-quality, reference butterfly, and moth genomes have been instrumental to advancing our understanding of how hybridization, and natural selection drive genomic change during the origin of new species and novel traits. Here, we present a genome assembly of the Southern Dogface butterfly, Zerene cesonia (Pieridae) whose brilliant wing colorations have been implicated in developmental plasticity, hybridization, sexual selection, and speciation. We assembled 266,407,278 bp of the Z. cesonia genome, which accounts for 98.3% of the estimated 271 Mb genome size. Using a hybrid approach involving Chicago libraries with Hi-Rise assembly and a diploid Meraculous assembly, the final haploid genome was assembled. In the final assembly, nearly all autosomes and the Z chromosome were assembled into single scaffolds. The largest 29 scaffolds accounted for 91.4% of the genome assembly, with the remaining ∼8% distributed among another 247 scaffolds and overall N50 of 9.2 Mb. Tissue-specific RNA-seq informed annotations identified 16,442 protein-coding genes, which included 93.2% of the arthropod Benchmarking Universal Single-Copy Orthologs (BUSCO). The Z. cesonia genome assembly had ∼9% identified as repetitive elements, with a transposable element landscape rich in helitrons. Similar to other Lepidoptera genomes, Z. cesonia showed a high conservation of chromosomal synteny. The Z. cesonia assembly provides a high-quality reference for studies of chromosomal arrangements in the Pierid family, as well as for population, phylo, and functional genomic studies of adaptation and speciation. 
    more » « less
  4. Haplotype-level allelic characterization facilitates research on the functional, evolutionary and breeding-related features of extremely large and complex plant genomes. We report a 21.7-Gb chromosome-level haplotype-resolved assembly in Pinus densiflora. We found genome rearrangements involving translocations and inversions between chromosomes 1 and 3 of Pinus species and a proliferation of specific long terminal repeat (LTR) retrotransposons (LTR-RTs) in P. densiflora. Evolutionary analyses illustrated that tandem and LTR-RT-mediated duplications led to an increment of transcription factor (TF) genes in P. densiflora. The haplotype sequence comparison showed allelic imbalances, including presence–absence variations of genes (PAV genes) and their functional contributions to flowering and abiotic stress-related traits in P. densiflora. Allele-aware resequencing analysis revealed PAV gene diversity across P. densiflora accessions. Our study provides insights into key mechanisms underlying the evolution of genome structure, LTR-RTs and TFs within the Pinus lineage as well as allelic imbalances and diversity across P. densiflora. 
    more » « less
  5. Abstract The angiosperm genus Silene is a model system for several traits of ecological and evolutionary significance in plants, including breeding system and sex chromosome evolution, host-pathogen interactions, invasive species biology, heavy metal tolerance, and cytonuclear interactions. Despite its importance, genomic resources for this large genus of approximately 850 species are scarce, with only one published whole-genome sequence (from the dioecious species Silene latifolia). Here, we provide genomic and transcriptomic resources for a hermaphroditic representative of this genus (S. noctiflora), including a PacBio Iso-Seq transcriptome, which uses long-read, single-molecule sequencing technology to analyze full-length mRNA transcripts. Using these data, we have assembled and annotated high-quality full-length cDNA sequences for approximately 14,126 S. noctiflora genes and 25,317 isoforms. We demonstrated the utility of these data to distinguish between recent and highly similar gene duplicates by identifying novel paralogous genes in an essential protease complex. Furthermore, we provide a draft assembly for the approximately 2.7-Gb genome of this species, which is near the upper range of genome-size values reported for diploids in this genus and threefold larger than the 0.9-Gb genome of Silene conica, another species in the same subgenus. Karyotyping confirmed that S. noctiflora is a diploid, indicating that its large genome size is not due to polyploidization. These resources should facilitate further study and development of this genus as a model in plant ecology and evolution. 
    more » « less