skip to main content


Title: Functional and phylogenetic variation in anthropoid incisor size
Abstract Objectives

Previous studies have shown that frugivorous anthropoids have wider incisors than folivores relative to body mass, and that catarrhines have relatively wider incisors than platyrrhines. This study reexamines these contrasts using mandibular length as a biomechanical standard to quantify relative incisor width.

Materials and Methods

Dental, mandibular, and body‐mass data for 86 anthropoid species were taken from the literature. Incisor width was size‐adjusted using shape ratios, with mandibular length and body mass as the denominators. Dietary and phylogenetic effects were examined using phylogenetic generalized least squares.

Results

Mandible‐based ratios provide a signal that is very similar to the one derived from ratios computed using body mass. Frugivores have relatively wider incisors than folivores, as expected. There is limited support for a stronger dietary effect in platyrrhines when mandible‐based ratios are used, but neither type of ratio indicates an overall difference between platyrrhines and catarrhines.

Discussion

Although both ratios support a link between incisor size and diet, there is some evidence indicating that mandible‐based ratios are more sensitive to dietary variation at smaller phylogenetic scales. Understanding why the signals from the two ratios diverge at such scales may help clarify the functional significance of variation in incisor width. The results of this study undermine the view that platyrrhines, as a group, tend to have narrower incisors than catarrhines, regardless of diet. Instead, the difference between the two clades noted in previous studies can be explained by greater incisor functional diversity in platyrrhines.

 
more » « less
NSF-PAR ID:
10367443
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Physical Anthropology
Volume:
176
Issue:
3
ISSN:
0002-9483
Page Range / eLocation ID:
p. 390-401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    By combining muscle architectural data with biomechanical variables relating to the jaw, we produce anatomically derived maximum bite force estimations for 23 species of catarrhine and platyrrhine primates. We investigate how bite force scales across the sample as a whole (and within each parvorder) relative to two size proxies, body mass and cranial geometric mean, and the effect of diet upon bite force. Bite force is estimated at three representative bite points along the dental row: the first maxillary incisor, canine, and third‐most mesial paracone. We modeled bite force by combining calculated physiological cross‐sectional area of the jaw adductors from Hartstone‐Rose et al. [Anat Rec 301 (2018) 311–324] with osteological measurements of lever‐ and load‐arm lengths from the same specimens [Hartstone‐Rose et al., Anat Rec 295 (2012) 1336–1351]. Bite force scales with positive allometry relative to cranial geometric mean across our entire sample and tends toward positive allometry relative to body mass. Bite force tends toward positive allometry within platyrrhines but scales isometrically within catarrhines. There was no statistically significant scaling difference with diet. Our findings imply an absence of a dietary signal in the scaling of bite force, a result that differs from the scaling of physiological cross‐sectional area alone. That is, although previous studies have found a dietary signal in the muscle fiber architecture in these species, when these are combined with their leverages, that signal is undetectable. On the parvorder level, our data also demonstrate that the platyrrhine masticatory system appears more mechanically advantageous than that of catarrhines. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:2026–2035, 2020. © 2019 American Association for Anatomy

     
    more » « less
  2. Objectives

    Ecological factors, but also tooth‐to‐tooth contact over time, have a dramatic effect on tooth wear in primates. The aim of this study is to test whether incisor tooth wear changes predictably with age and can thus be used as an age estimation method in a wild population of mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda.

    Materials and methods

    In mountain gorillas of confidently known chronological age (N = 24), we measured the crown height of all permanent maxillary and mandibular incisors (I1, I1, I2, I2) as a proxy for incisal macrowear. Linear and quadratic regressions for each incisor were used to test whether age can be predicted by crown height. Using these models, we then predicted age at death of two individual mountain gorillas of probable identifications, based on their incisor crown height.

    Results

    Age decreased significantly with incisor height for all teeth, but the upper first incisors (I1) provided the best results, with the lowest Akaike's Information Criterion corrected for small sample size (AICc) and lowest Standard Error of the Estimate (SEE). When the best age equations for each sex were applied to gorillas with probable identifications, the predicted ages differed 1.58 and 3.33 years from the probable ages of these individuals.

    Conclusions

    Our findings corroborate that incisor crown height, a proxy for incisal wear, varies predictably with age. This relationship can be used to estimate age at death of unknown gorillas in the skeletal collection, and in some cases, to corroborate the identity of individual gorillas recovered from the forest postmortem at an advanced state of decomposition. Such identifications help fill gaps in the demographic database and support research that requires individual‐level data.

     
    more » « less
  3. Abstract

    The evolution of complex dentitions in mammals was a major innovation that facilitated the expansion into new dietary niches, which imposed selection for tight form–function relationships. Teeth allow mammals to ingest and process food items by applying forces produced by a third-class lever system composed by the jaw adductors, the cranium, and the mandible. Physical laws determine changes in jaw adductor (biting) forces at different bite point locations along the mandible (outlever), thus, individual teeth are expected to experience different mechanical regimes during feeding. If the mammal dentition exhibits functional adaptations to mandible feeding biomechanics, then teeth are expected to have evolved to develop mechanically advantageous sizes, shapes, and positions. Here, we present bats as a model system to test this hypothesis and, more generally, for integrative studies of mammal dental diversity. We combine a field-collected dataset of bite forces along the tooth row with data on dental and mandible morphology across 30 bat species. We (1) describe, for the first time, bite force trends along the tooth row of bats; (2) use phylogenetic comparative methods to investigate relationships among bite force patterns, tooth, and mandible morphology; and (3) hypothesize how these biting mechanics patterns may relate to the developmental processes controlling tooth formation. We find that bite force variation along the tooth row is consistent with predictions from lever mechanics models, with most species having the greatest bite force at the first lower molar. The cross-sectional shape of the mandible body is strongly associated with the position of maximum bite force along the tooth row, likely reflecting mandibular adaptations to varying stress patterns among species. Further, dental dietary adaptations seem to be related to bite force variation along molariform teeth, with insectivorous species exhibiting greater bite force more anteriorly, narrower teeth and mandibles, and frugivores/omnivores showing greater bite force more posteriorly, wider teeth and mandibles. As these craniodental traits are linked through development, dietary specialization appears to have shaped intrinsic mechanisms controlling traits relevant to feeding performance.

     
    more » « less
  4. Abstract

    Previous work on the mandibular canal, mental foramen, and mandibular foramen has focused on humans and some other non‐primate mammals (with small sample sizes), but little work has investigated the mandibular canal and inferior alveolar nerve (IAN) across primates. However, it is important to understand the relationship between the IAN and mandibular canal due to the IAN's close relationship to the teeth and mastication, and thus dietary adaptations. While it is assumed that most bony canals within the skull grow around and form to pre‐existing nervous structures, this relationship has never been validated for the IAN and mandibular canal. MicroCT scans of 273 individuals (131 females, 134 males, and 8 unknown sex) from 68 primate species and three mammalian outgroups, and diceCT scans of 66 individuals (35 females, 23 males, and 8 unknown sex) from 33 primate species and the same mammalian outgroups were used to create 3D models of the IAN and mandibular canal from which cross‐sectional areas were taken at various points on the structures. Using qualitative descriptions, phylogenetic generalized least squares analysis, and phylogenetic ANOVAs, we were able to establish three main conclusions: (1) the mandibular canal is most often not a defined canal within the mandible of primates, (2) when the canal can be identified, the IAN does not comprise most of the space within, and (3) there are significant relationships between the IAN and the corresponding canals, with most showing isometry and the mental foramen/nerve showing negative allometry.

     
    more » « less
  5. Abstract Background

    Sexual-size dimorphism (SSD) is replete among animals, but while the selective pressures that drive the evolution of SSD have been well studied, the developmental mechanisms upon which these pressures act are poorly understood. Ours and others’ research has shown that SSD inD. melanogasterreflects elevated levels of nutritional plasticity in females versus males, such that SSD increases with dietary intake and body size, a phenomenon called sex-specific plasticity (SSP). Additional data indicate that while body size in both sexes responds to variation in protein level, only female body size is sensitive to variation in carbohydrate level. Here, we explore whether these difference in sensitivity at the morphological level are reflected by differences in how the insulin/IGF-signaling (IIS) and TOR-signaling pathways respond to changes in carbohydrates and proteins in females versus males, using a nutritional geometry approach.

    Results

    The IIS-regulated transcripts of4E-BPandInRmost strongly correlated with body size in females and males, respectively, but neither responded to carbohydrate level and so could not explain the sex-specific response to body size to dietary carbohydrate. Transcripts regulated by TOR-signaling did, however, respond to dietary carbohydrate in a sex-specific manner. In females, expression ofdILP5positively correlated with body size, while expression ofdILP2,3and8,was elevated on diets with a low concentration of both carbohydrate and protein. In contrast, we detected lower levels of dILP2 and 5 protein in the brains of females fed on low concentration diets. We could not detect any effect of diet ondILPexpression in males.

    Conclusion

    Although females and males show sex-specific transcriptional responses to changes in protein and carbohydrate, the patterns of expression do not support a simple model of the regulation of body-size SSP by either insulin- or TOR-signaling. The data also indicate a complex relationship between carbohydrate and protein level,dILPexpression and dILP peptide levels in the brain. In general, diet quality and sex both affect the transcriptional response to changes in diet quantity, and so should be considered in future studies that explore the effect of nutrition on body size.

     
    more » « less