skip to main content

Title: Reconciling the results of the z ∼ 2 MOSDEF and KBSS-MOSFIRE Surveys
ABSTRACT

The combination of the MOSDEF and KBSS-MOSFIRE surveys represents the largest joint investment of Keck/MOSFIRE time to date, with ∼3000 galaxies at 1.4 ≲ z ≲ 3.8, roughly half of which are at z ∼ 2. MOSDEF is photometric- and spectroscopic-redshift selected with a rest-optical magnitude limit, while KBSS-MOSFIRE is primarily selected based on rest-UV colours and a rest-UV magnitude limit. Analysing both surveys in a uniform manner with consistent spectral-energy-distribution (SED) models, we find that the MOSDEF z ∼ 2 targeted sample has higher median M* and redder rest U−V colour than the KBSS-MOSFIRE z ∼ 2 targeted sample, and smaller median SED-based SFR and sSFR (SFR(SED) and sSFR(SED)). Specifically, MOSDEF targeted a larger population of red galaxies with U−V and V−J ≥1.25, while KBSS-MOSFIRE contains more young galaxies with intense star formation. Despite these differences in the z ∼ 2 targeted samples, the subsets of the surveys with multiple emission lines detected and analysed in previous work are much more similar. All median host-galaxy properties with the exception of stellar population age – i.e. M*, SFR(SED), sSFR(SED), AV, and UVJ colours – agree within the uncertainties. Additionally, when uniform emission-line fitting and stellar Balmer absorption correction techniques more » are applied, there is no significant offset between both samples in the [O iii]λ5008/H β versus [N ii]λ6585/H α diagnostic diagram, in contrast to previously reported discrepancies. We can now combine the MOSDEF and KBSS-MOSFIRE surveys to form the largest z ∼ 2 sample with moderate-resolution rest-optical spectra and construct the fundamental scaling relations of star-forming galaxies during this important epoch.

« less
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;   « less
Award ID(s):
2009313 2009278 2009085
Publication Date:
NSF-PAR ID:
10367460
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
3
Page Range or eLocation-ID:
p. 3871-3892
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We analyse the completeness of the MOSDEF survey, in which z ∼ 2 galaxies were selected for rest-optical spectroscopy from well-studied HST extragalactic legacy fields down to a fixed rest-optical magnitude limit (HAB = 24.5). The subset of z ∼ 2 MOSDEF galaxies with high signal-to-noise (S/N) emission-line detections analysed in previous work represents a small minority (<10 per cent) of possible z ∼ 2 MOSDEF targets. It is therefore crucial to understand how representative this high S/N subsample is, while also more fully exploiting the MOSDEF spectroscopic sample. Using spectral-energy distribution (SED) models and rest-optical spectral stacking, we compare the MOSDEF z ∼ 2 high S/N subsample with the full MOSDEF sample of z ∼ 2 star-forming galaxies with redshifts, the latter representing an increase in sample size of more than a factor of three. We find that both samples have similar emission-line properties, in particular in terms of the magnitude of the offset from the local star-forming sequence on the [N ii] BPT diagram. There are small differences in median host galaxy properties, including the stellar mass (M*), star formation rate (SFR) and specific SFR (sSFR), and UVJ colours; however, these offsets are minor considering the wide spread of themore »distributions. Using SED modelling, we also demonstrate that the sample of z ∼ 2 star-forming galaxies observed by the MOSDEF survey is representative of the parent catalog of available such targets. We conclude that previous MOSDEF results on the evolution of star-forming galaxy emission-line properties were unbiased relative to the parent z ∼ 2 galaxy population.

    « less
  2. ABSTRACT

    We present specific star formation rates (sSFRs) for 40 ultraviolet (UV)-bright galaxies at z ∼ 7–8 observed as part of the Reionization Era Bright Emission Line Survey (REBELS) Atacama Large Millimeter/submillimeter Array (ALMA) large programme. The sSFRs are derived using improved star formation rate (SFR) calibrations and spectral energy distribution (SED)-based stellar masses, made possible by measurements of far-infrared (FIR) continuum emission and [C ii]-based spectroscopic redshifts. The median sSFR of the sample is $18_{-5}^{+7}$ Gyr−1, significantly larger than literature measurements lacking constraints in the FIR, reflecting the larger obscured SFRs derived from the dust continuum relative to that implied by the UV+optical SED. We suggest that such differences may reflect spatial variations in dust across these luminous galaxies, with the component dominating the FIR distinct from that dominating the UV. We demonstrate that the inferred stellar masses (and hence sSFRs) are strongly dependent on the assumed star formation history in reionization-era galaxies. When large sSFR galaxies (a population that is common at z > 6) are modelled with non-parametric star formation histories, the derived stellar masses can increase by an order of magnitude relative to constant star formation models, owing to the presence of a significant old stellar population thatmore »is outshined by the recent burst. The [C ii] line widths in the largest sSFR systems are often very broad, suggesting dynamical masses capable of accommodating an old stellar population suggested by non-parametric models. Regardless of these systematic uncertainties among derived parameters, we find that sSFRs increase rapidly toward higher redshifts for massive galaxies (9.6 < log (M*/M⊙) < 9.8), evolving as (1 + z)1.7 ± 0.3, broadly consistent with expectations from the evolving baryon accretion rates.

    « less
  3. Abstract We present results from Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm continuum observations of a sample of 27 star-forming galaxies at z = 2.1–2.5 from the MOSFIRE Deep Evolution Field survey with metallicity and star formation rate measurements from optical emission lines. Using stacks of Spitzer, Herschel, and ALMA photometry (rest frame ∼8–400 μ m), we examine the infrared (IR) spectral energy distributions (SED) of z ∼ 2.3 subsolar-metallicity (∼0.5 Z ⊙ ) luminous infrared galaxies (LIRGs). We find that the data agree well with an average template of higher-luminosity local low-metallicity dwarf galaxies (reduced χ 2 = 1.8). When compared with the commonly used templates for solar-metallicity local galaxies or high-redshift LIRGs and ultraluminous IR galaxies, even in the most favorable case (with reduced χ 2 = 2.8), the templates are rejected at >98% confidence. The broader and hotter IR SED of both the local dwarfs and high-redshift subsolar-metallicity galaxies may result from different grain properties or a harder/more intense ionizing radiation field that increases the dust temperature. The obscured star formation rate (SFR) indicated by the far-IR emission of the subsolar-metallicity galaxies is only ∼60% of the total SFR, considerably lower than that of the local LIRGsmore »with ∼96%–97% obscured fractions. Due to the evolving IR SED shape, the local LIRG templates fit to mid-IR data overestimate the Rayleigh–Jeans tail measurements by a factor of 2–20. These templates underestimate IR luminosities if fit to the observed ALMA fluxes by >0.4 dex. At a given stellar mass or metallicity, dust masses at z ∼ 2.3 are an order of magnitude higher than z ∼ 0. Given the predicted molecular gas fractions, the observed z ∼ 2.3 dust-to-stellar mass ratios suggest lower dust-to-molecular gas masses than in local galaxies with similar metallicities.« less
  4. ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $\Delta \rm log(\rm O/H) \sim 0.25$ dex at M*< $10^{9.75}\, \mathrm{M}_{\odot }$ down to $\Delta \rm log(\rm O/H) \sim 0.05$ at M* ≳ $10^{10.5}\, \mathrm{M}_{\odot }$. In contrast, the O3N2-based MZR shows a constant offset of $\Delta \rm log(\rm O/H) \sim 0.30$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$\log (\rm O3N2)$ relations. We find an anticorrelation between $\log (\rm O/H)$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5more »stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $\log (\rm SFR / M_{\odot } \, yr^{-1})$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope.« less
  5. ABSTRACT We analyse the rest-optical emission-line spectra of z ∼ 2.3 star-forming galaxies in the complete MOSFIRE Deep Evolution Field (MOSDEF) survey. In investigating the origin of the well-known offset between the sequences of high-redshift and local galaxies in the [O iii]λ5008/Hβ versus [N ii]λ6585/Hα (‘[N ii] BPT’) diagram, we define two populations of z ∼ 2.3 MOSDEF galaxies. These include the high population that is offset towards higher [O iii]λ5008/Hβ and/or [N ii]λ6585/Hα with respect to the local SDSS sequence and the low population that overlaps the SDSS sequence. These two groups are also segregated within the [O  iii]λ5008/Hβ versus [S ii]λλ6718,6733/Hα and the [O iii]λλ4960,5008/[O ii ]λλ3727,3730 (O32) versus ([O  iii]λλ4960,5008+[O ii]λλ3727,3730)/Hβ (R23) diagrams, which suggests qualitatively that star-forming regions in the more offset galaxies are characterized by harder ionizing spectra at fixed nebular oxygen abundance. We also investigate many galaxy properties of the split sample and find that the high sample is on average smaller in size and less massive, but has higher specific star formation rate (SFR) and SFR surface density values and is slightly younger compared to the low population. From Cloudy+BPASS photoionization models, we estimate that the high population has a lower stellar metallicity (i.e. harder ionizing spectrum) but slightly higher nebular metallicity and higher ionizationmore »parameter compared to the low population. While the high population is more α-enhanced (i.e. higher α/Fe) than the low population, both samples are significantly more α-enhanced compared to local star-forming galaxies with similar rest-optical line ratios. These differences must be accounted for in all high-redshift star-forming galaxies – not only those ‘offset’ from local excitation sequences.« less