Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral at
The warm Neptune GJ 3470b transits a nearby (
 Authors:
 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
 Publication Date:
 NSFPAR ID:
 10367476
 Journal Name:
 The Astrophysical Journal Letters
 Volume:
 931
 Issue:
 2
 Page Range or eLocationID:
 Article No. L15
 ISSN:
 20418205
 Publisher:
 DOI PREFIX: 10.3847
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract z > 7 and largely ionized byz ∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volumeaveraged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\lesssim {10}^{3}$ ). In particular, the neutral fraction evolution of the IGM at the critical redshift range of ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\sim 1$z = 6–7 is poorly constrained. We present new constraints on at ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}$z ∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z < 7.09. We derive modelindependent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyα and Lyβ forests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first modelindependent constraints on the IGM neutral hydrogen fraction atz ∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1 ${\overline{x}}_{more\xbb}$σ ), (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.5)<0.87\pm 0.03$σ ), and (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.7)<{0.94}_{0.09}^{+0.06}$σ ). The dark pixel fractions atz > 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. 
Abstract We report the discovery of MAGAZ3NE J095924+022537, a spectroscopically confirmed protocluster at
around a spectroscopically confirmed $z={3.3665}_{0.0012}^{+0.0009}$UVJ quiescent ultramassive galaxy (UMG; ) in the COSMOS UltraVISTA field. We present a total of 38 protocluster members (14 spectroscopic and 24 photometric), including the UMG. Notably, and in marked contrast to protoclusters previously reported at this epoch that have been found to contain predominantly starforming members, we measure an elevated fraction of quiescent galaxies relative to the coeval field ( ${M}_{\star}\phantom{\rule{0.25em}{0ex}}={2.34}_{0.34}^{+0.23}\times {10}^{11}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$ versus ${73.3}_{16.9}^{+26.7}\mathrm{\%}$ for galaxies with stellar mass ${11.6}_{4.9}^{+7.1}\mathrm{\%}$M _{⋆}≥ 10^{11}M _{⊙}). This high quenched fraction provides a striking and important counterexample to the seeming ubiquitousness of starforming galaxies in protoclusters atz > 2 and suggests, rather, that protoclusters exist in a diversity of evolutionary states in the early universe. We discuss the possibility that we might be observing either “early mass quenching” or nonclassical “environmental quenching.” We also present the discovery of MAGAZ3NE J100028+023349, a second spectroscopically confirmed protocluster, at a very similar redshift of . We present a total of 20 protocluster members, 12 of which are photometric and eight spectroscopic including a poststarburst UMG ( $z={3.3801}_{0.0281}^{+0.0213}$ ). Protoclusters MAGAZ3NE J0959more » ${M}_{\star}={2.95}_{0.20}^{+0.21}\times {10}^{11}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$ 
Abstract We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fastrotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signaltonoise ratio integral field spectroscopy (IFS) from the Gemini MultiObject Spectrograph with widefield data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (
M _{BH}), stellar masstolight ratio, dark matter content, and intrinsic shape. We find and a triaxial intrinsic shape with axis ratios ${M}_{\mathrm{BH}}=\left(1.7\pm 0.4\right)\times {10}^{9}\phantom{\rule{0.33em}{0ex}}{M}_{\odot}$p =b /a = 0.902 ± 0.009 and , triaxiality parameter $q=c/a={0.721}_{0.010}^{+0.011}$T = 0.39 ± 0.04. In comparison, the bestfit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 prefer and ${M}_{\mathrm{BH}}=\left(2.4\pm 0.6\right)\times {10}^{9}\phantom{\rule{0.33em}{0ex}}{M}_{\odot}$ , respectively. Neither model can account for the nonaxisymmetric stellar velocity features present inmore » ${M}_{\mathrm{BH}}=\left(2.9\pm 0.3\right)\times {10}^{9}\phantom{\rule{0.33em}{0ex}}{M}_{\odot}$ 
Abstract We present the KODIAQZ survey aimed to characterize the cool, photoionized gas at 2.2 ≲
z ≲ 3.6 in 202 Hi selected absorbers with 14.6 ≤ < 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with $\mathrm{log}{N}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}$ at 2.2 ≲ $14.6\le \mathrm{log}{N}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}<20$z ≲ 3.6 can be metalrich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyα absorbers (DLAs); it can also be very metalpoor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For absorbers, the frequency of pristine absorbers is about 1%–10%, while for $16<\mathrm{log}{N}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}<20$ absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δ $14.6\le \mathrm{log}{N}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\le 16$v < 500 km s^{−1}imply that the metals are poorly mixed in gas. We show that these photoionized absorbers contribute to aboutmore » $14.6\le \mathrm{log}{N}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}<20$ 
Abstract Benchmark brown dwarf companions with welldetermined ages and modelindependent masses are powerful tools to test substellar evolutionary models and probe the formation of giant planets and brown dwarfs. Here, we report the independent discovery of HIP 21152 B, the first imaged brown dwarf companion in the Hyades, and conduct a comprehensive orbital and atmospheric characterization of the system. HIP 21152 was targeted in an ongoing highcontrast imaging campaign of stars exhibiting propermotion changes between Hipparcos and Gaia, and was also recently identified by Bonavita et al. (2022) and Kuzuhara et al. (2022). Our Keck/NIRC2 and SCExAO/CHARIS imaging of HIP 21152 revealed a comoving companion at a separation of 0.″37 (16 au). We perform a joint orbit fit of all available relative astrometry and radial velocities together with the HipparcosGaia proper motions, yielding a dynamical mass of
, which is 1–2 ${24}_{4}^{+6}\phantom{\rule{0.25em}{0ex}}{M}_{\mathrm{Jup}}$σ lower than evolutionary model predictions. Hybrid grids that include the evolution of cloud properties best reproduce the dynamical mass. We also identify a comoving wideseparation (1837″ or 7.9 × 10^{4}au) earlyL dwarf with an inferred mass near the hydrogenburning limit. Finally, we analyze the spectra and photometry of HIP 21152 B using the Saumon & Marley (2008)more »