skip to main content


Title: Eavesdropping on the brain at sea: development of a surface-mounted system to detect weak electrophysiological signals from wild animals
Abstract

Despite rapid advances in sensor development and technological miniaturization, it remains challenging to non-invasively record small-amplitude electrophysiological signals from an animal in its natural environment. Many advances in ecophysiology and biologging have arisen through sleep studies, which rely on detecting small signals over multiple days and minimal disruption of natural animal behavior. This paper describes the development of a surface-mounted system that has allowed novel electrophysiological recordings of sleep in wild marine mammals. We discuss our iterative design process by providing sensor-comparison data, detailed technical illustrations, and material recommendations. We describe the system’s performance over multiple days in 12 freely moving northern elephant seals (Mirounga angustirostris) sleeping on land and in water in captivity and the wild. We leverage advances in signal processing by applying independent components analysis and inertial motion sensor calibrations to maximize signal quality across large (> 10 gigabyte), multi-day datasets. Our study adds to the suite of biologging tools available to scientists seeking to understand the physiology and behavior of wild animals in the context in which they evolved.

 
more » « less
NSF-PAR ID:
10367478
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Animal Biotelemetry
Volume:
10
Issue:
1
ISSN:
2050-3385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The need to develop wearable devices for personal health monitoring, diagnostics, and therapy has inspired the production of innovative on‐demand, customizable technologies. Several of these technologies enable printing of raw electronic materials directly onto biological organs and tissues. However, few of them have been thoroughly investigated for biocompatibility of the raw materials on the cellular, tissue, and organ levels or with different cell types. In addition, highly accurate multiday in vivo monitoring using such on‐demand, in situ fabricated devices has yet to be done. Presented herein is the first fully biocompatible, on‐skin fabricated electronics for multiple cell types and tissues that can capture electrophysiological signals with high fidelity. While also demonstrating improved mechanical and electrical properties, the drawn‐on‐skin ink retains its properties under various writing conditions, which minimizes the variation in electrical performance. Furthermore, the drawn‐on‐skin ink shows excellent biocompatibility with cardiomyocytes, neurons, mice skin tissue, and human skin. The high signal‐to‐noise ratios of the electrophysiological signals recorded with the DoS sensor over multiple days demonstrate its potential for personalized, long‐term, and accurate electrophysiological health monitoring.

     
    more » « less
  2. Abstract Background

    Repetitive action, resistance to environmental change and fine motor disruptions are hallmarks of autism spectrum disorder (ASD) and other neurodevelopmental disorders, and vary considerably from individual to individual. In animal models, conventional behavioral phenotyping captures such fine-scale variations incompletely. Here we observed male and female C57BL/6J mice to methodically catalog adaptive movement over multiple days and examined two rodent models of developmental disorders against this dynamic baseline. We then investigated the behavioral consequences of a cerebellum-specific deletion in Tsc1 protein and a whole-brain knockout in Cntnap2 protein in mice. Both of these mutations are found in clinical conditions and have been associated with ASD.

    Methods

    We used advances in computer vision and deep learning, namely a generalized form of high-dimensional statistical analysis, to develop a framework for characterizing mouse movement on multiple timescales using a single popular behavioral assay, the open-field test. The pipeline takes virtual markers from pose estimation to find behavior clusters and generate wavelet signatures of behavior classes. We measured spatial and temporal habituation to a new environment across minutes and days, different types of self-grooming, locomotion and gait.

    Results

    Both Cntnap2 knockouts and L7-Tsc1 mutants showed forelimb lag during gait. L7-Tsc1 mutants and Cntnap2 knockouts showed complex defects in multi-day adaptation, lacking the tendency of wild-type mice to spend progressively more time in corners of the arena. In L7-Tsc1 mutant mice, failure to adapt took the form of maintained ambling, turning and locomotion, and an overall decrease in grooming. However, adaptation in these traits was similar between wild-type mice and Cntnap2 knockouts. L7-Tsc1 mutant and Cntnap2 knockout mouse models showed different patterns of behavioral state occupancy.

    Limitations

    Genetic risk factors for autism are numerous, and we tested only two. Our pipeline was only done under conditions of free behavior. Testing under task or social conditions would reveal more information about behavioral dynamics and variability.

    Conclusions

    Our automated pipeline for deep phenotyping successfully captures model-specific deviations in adaptation and movement as well as differences in the detailed structure of behavioral dynamics. The reported deficits indicate that deep phenotyping constitutes a robust set of ASD symptoms that may be considered for implementation in clinical settings as quantitative diagnosis criteria.

     
    more » « less
  3. Abstract

    Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour inAnolislizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap colouration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap colouration in the most widespread species of anole,Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation‐by‐distance did not seem to explain our results. On the other hand, these habitat‐specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation—parallel responses across islands—was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.

     
    more » « less
  4. Abstract

    Individual differences in behavior are the raw material upon which natural selection acts, but despite increasing recognition of the value of considering individual differences in the behavior of wild animals to test evolutionary hypotheses, this approach has only recently become popular for testing cognitive abilities. In order for the intraspecific approach with wild animals to be useful for testing evolutionary hypotheses about cognition, researchers must provide evidence that measures of cognitive ability obtained from wild subjects reflect stable, general traits. Here, we used a multi-access box paradigm to investigate the intra-individual reliability of innovative problem-solving ability across time and contexts in wild spotted hyenas (Crocuta crocuta). We also asked whether estimates of reliability were affected by factors such as age-sex class, the length of the interval between tests, or the number of times subjects were tested. We found significant contextual and temporal reliability for problem-solving. However, problem-solving was not reliable for adult subjects, when trials were separated by more than 17 days, or when fewer than seven trials were conducted per subject. In general, the estimates of reliability for problem-solving were comparable to estimates from the literature for other animal behaviors, which suggests that problem-solving is a stable, general trait in wild spotted hyenas.

     
    more » « less
  5. Abstract Background

    Inter-population variation in host-associated microbiota reflects differences in the hosts’ environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes—an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia.

    Results

    The diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal ‘signal of captivity’ that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota.

    Conclusions

    As one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple ‘captive vs. wild’ dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes.

     
    more » « less