skip to main content


Title: Upcycling end-of-life vehicle waste plastic into flash graphene
Abstract

Responsible disposal of vehicles at the end of life is a pressing environmental concern. In particular, waste plastic forms the largest proportion of non-recycled waste material from light-duty vehicles, and often ends up in a landfill. Here we report the upcycling of depolluted, dismantled and shredded end-of-life waste plastic into flash graphene using flash Joule heating. The synthetic process requires no separation or sorting of plastics and uses no solvents or water. We demonstrate the practical value of the graphene as a re-inforcing agent in automotive polyurethane foam composite, where its introduction leads to improved tensile strength and low frequency noise absorption properties. We demonstrate process continuity by upcycling the resulting foam composite back into equal-quality flash graphene. A prospective cradle-to-gate life cycle assessment suggests that our method may afford lower cumulative energy demand and water use, and a decrease in global warming potential compared to traditional graphene synthesis methods.

 
more » « less
NSF-PAR ID:
10367515
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Engineering
Volume:
1
Issue:
1
ISSN:
2731-3395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogen gas (H2) is the primary storable fuel for pollution‐free energy production, with over 90 million tonnes used globally per year. More than 95% of H2is synthesized through metal‐catalyzed steam methane reforming that produces 11 tonnes of carbon dioxide (CO2) per tonne H2. “Green H2” from water electrolysis using renewable energy evolves no CO2, but costs 2–3× more, making it presently economically unviable. Here catalyst‐free conversion of waste plastic into clean H2along with high purity graphene is reported. The scalable procedure evolves no CO2when deconstructing polyolefins and produces H2in purities up to 94% at high mass yields. The sale of graphene byproduct at just 5% of its current value yields H2production at a negative cost. Life‐cycle assessment demonstrates a 39–84% reduction in emissions compared to other H2production methods, suggesting the flash H2process to be an economically viable, clean H2production route.

     
    more » « less
  2. Abstract

    Polystyrene (PS) is one of the least recycled large‐volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of “degradation‐upcycling” to synthesize a library of high‐value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value‐added chemicals.

     
    more » « less
  3. Abstract

    Polystyrene (PS) is one of the least recycled large‐volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of “degradation‐upcycling” to synthesize a library of high‐value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value‐added chemicals.

     
    more » « less
  4. Abstract

    The generation of electronic waste (e‐waste) poses a significant environmental challenge, necessitating strategies to extend electronics’ lifespan and incorporate eco‐friendly materials to enable their rapid degradation after disposal. Foldable electronics utilizing eco‐friendly materials offer enhanced durability during operation and degradability at the end of their life cycle. However, ensuring robust physical adhesion between electrodes/circuits and substrates during the folding process remains a challenge, leading to interface delamination and electronic failure. In this study, electrohydrodynamic (EHD) printing is employed as a cost‐effective method to fabricate the eco‐friendly foldable electronics by printing PEDOT:PSS/graphene composite circuits onto polyvinyl alcohol (PVA) films. The morphology and electrical properties of the printed patterns using inks with varying graphene and PEDOT:PSS weight ratios under different printing conditions are investigated. The foldability of the printed electronics is demonstrated, showing minimal resistance variation and stable electronic response even after four folds (16 layers) and hundreds of folding and unfolding cycles. Additionally, the application of printed PEDOT:PSS/graphene circuit is presented as a resistive temperature sensor for monitoring body temperature and respiration behavior. Furthermore, the transient features and degradation of the PEDOT:PSS/graphene/PVA based foldable electronics are explored, highlighting the potential promise as transient electronics in reducing electronic waste.

     
    more » « less
  5. Abstract

    While various plastic waste management practices are demonstrated to result in materials with similar properties, morphological features of plastic waste are often lost after recycling/upcycling. Particularly, synthetic textiles are a severely underutilized waste stream that contains built‐in value stemming from their woven architectures. This work demonstrates a simple upcycling strategy to convert polypropylene‐based (PP) woven fabrics to carbon fiber mats through direct pyrolysis for direct use in various end applications without need of additional processing steps, distinct from prior works converting plastic waste to carbon‐based additives. The retention of material properties and architectures, taking advantage of the inherent value with initial product manufacturing, is investigated, with optimal conditions resulting in consistent high carbon yields. Moreover, the textile‐derived carbon shows exceptional Joule heating performance, which can be employed in various heating applications, resulting in reduced energy consumption compared to conventional heating. Furthermore, decoration of fabric‐derived carbon with metal nanoparticles is demonstrated through electroplating, leading to altered surface functionality and further enhanced Joule heating performance. This work introduces a scalable method for upcycling of plastic waste to functional carbons that can completely retain initial material architectures with controlled shrinkage, providing a viable strategy for generating value‐added products toward electrification of heating processes.

     
    more » « less