Abstract Basaltic lavas from Harrat Uwayrid, Saudi Arabia, record the evolving magmatic and tectonic context of the Arabian Peninsula from at least the mid‐Miocene to the present day. New40Ar/39Ar ages spanning from the mid to late Miocene reveal that mid‐Miocene mafic volcanism formed a large, subalkaline volcanic plateau parallel to Red Sea rifts. Subsequent volumetrically subordinate late Miocene‐Quaternary alkaline volcanism erupted monogenetic cinder cones roughly orthogonal to the earlier volcanic field. The source region for all samples was affected by both fluid and silicate metasomatism; inferred mantle mineral assemblages include amphibole for mid‐Miocene lavas and phlogopite for late Miocene‐Quaternary samples. Calculated melting depths become shallower with time across the Miocene volcanic episode (∼20–15 Ma) but become deeper in the late Miocene to Quaternary (∼10–0 Ma), indicating melting pressures and temperatures significantly higher than those recorded in Miocene lavas despite progressive lithospheric thinning. We offer a two‐stage model for the formation of Harrat Uwayrid: (a) Early‐ and mid‐Miocene rifting associated with the Red Sea opening facilitated adiabatic melting of uppermost mantle lithosphere to form the early volcanic plateau and (b) Plate motion changes in the mid‐ and late‐Miocene initiated the Dead Sea Fault and destabilized a dense pyroxenitic lower lithosphere leading to foundering or lithospheric drip beneath Harrat Uwayrid that allowed deep lithospheric melting and formed the young volatile‐rich eruptives.
more »
« less
A Coupled Geochemical‐Geodynamic Approach for Predicting Mantle Melting in Space and Time
Abstract Geodynamic simulations underpin our understanding of upper‐mantle processes, but their predictions require validation against observational data. Widely used geophysical datasets provide limited constraints on dynamic processes into the geological past, whereas under‐exploited geochemical observations from volcanic lavas at Earth's surface constitute a valuable record of mantle processes back in time. Here, we describe a new peridotite‐melting parameterization, BDD21, that can predict the incompatible‐element concentrations of melts within geodynamic simulations, thereby providing a means to validate these simulations against geochemical datasets. Here, BDD21's functionality is illustrated using the Fluidity computational modeling framework, although it is designed so that it can be integrated with other geodynamic software. To validate our melting parameterization and coupled geochemical‐geodynamic approach, we develop 2‐D single‐phase flow simulations of melting associated with passive upwelling beneath mid‐oceanic ridges and edge‐driven convection adjacent to lithospheric steps. We find that melt volumes and compositions calculated for mid‐oceanic ridges at a range of mantle temperatures and plate spreading rates closely match those observed at present‐day ridges with the same conditions. Our lithospheric step simulations predict spatial and temporal melting trends that are consistent with those recorded at intraplate volcanic provinces in similar geologic settings. Taken together, these results suggest that our coupled geochemical‐geodynamic approach can accurately predict a suite of present‐day geochemical observations. Since our results are sensitive to small changes in upper‐mantle thermal and compositional structure, this novel approach provides a means to improve our understanding of the mantle's thermo‐chemical structure and flow regime into the geological past.
more »
« less
- Award ID(s):
- 1925595
- PAR ID:
- 10367519
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 23
- Issue:
- 4
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Oceanic island basalts are targeted for geochemical study because they provide a direct window into mantle composition and a wealth of information on the dynamics and timescales associated with Earth mixing. Previous studies mainly focused on the shield volcanic stage of oceanic islands and the more fusible, enriched mantle components that are easily distinguished in those basalts. Mantle depleted compositions are typically more difficult to resolve unless large amounts of this material participated in mantle melting (e.g., mid-ocean ridges), or unique processes allow for their compositions to be erupted undiluted, such as very small degrees of melting of a source with minimal fusible enriched components (e.g., rejuvenated basalts) or as xenoliths (e.g., abyssal peridotites). Mantle depleted components, defined here as material with low time-integrated Rb/Sr (low 87Sr/86Sr) and high time-integrated Sm/Nd and Lu/Hf ratios (high 143Nd/144Nd and 176Hf/177Hf) relative to primitive mantle, derive from a potentially very large volume reservoir (up to 80% of the mantle), and therefore need adequate characterization in order estimate the composition of the Earth and mantle-derived melts. This review focuses on mantle depleted compositions in oceanic island basalts using the Hawaiian-Emperor chain as a case study. The Hawaiian-Emperor chain is the ∼6000 km long geological record of the deeply sourced Hawaiian mantle plume, active for>81 Myr. Hawaiian volcanism evolves through four volcanic stages as a volcano traverses the Hawaiian plume: alkalic preshield, tholeiitic shield (80–90% volcano volume), alkalic postshield (∼1%), and silica undersaturated rejuvenated (< 0.1%). We report Pb-Sr-Nd-Hf isotope compositions and trace element concentrations of three rejuvenated Northwest Hawaiian Ridge basalts and compare them to an exhaustive compiled dataset of basalts from the Hawaiian Islands to the Emperor Seamounts. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes spanning ∼42 m.y. between the bend in the Hawaiian-Emperor chain and the Hawaiian Islands where there is no high-precision isotopic data published on the rejuvenated-stage over ∼47% of the chain. NWHR and Hawaiian Island rejuvenated basalts are geochemically similar, indicating a consistent source for rejuvenated volcanism over ∼12.5 million years. In contrast, shield-stage basalts from the oldest Emperor Seamounts are more depleted in isotopic composition (i.e., higher 176Hf/177Hf, and 143Nd/144Nd with lower 87Sr/86Sr and 208Pb*/206Pb*) and trace element concentrations (i.e., much lower concentrations of highly incompatible elements) than all other depleted Hawaiian basalts younger than the bend, including NWHR rejuvenated basalts. The strongly depleted source for the oldest Emperor Seamounts (> 70 Ma) was likely related to interaction with the Kula-Pacific-Izanagi mid-ocean ridge spreading system active near the Hawaiian plume in the Late Cretaceous. In contrast, the incompatible trace element ratios of NWHR rejuvenated basalts require a distinct source in the Hawaiian mantle plume that was imprinted by ancient (> 1 Ga) partial melting, likely ancient recycled oceanic lithosphere. This review of the geochemistry of Hawaiian depleted components documents the need for the sampling of multiple distinctive depleted compositions, each preferentially melted during specific periods of Hawaiian plume activity. This suggests that the composition of depleted components can evolve during the lifetime of the mantle plume, as observed for enriched components in the Hawaiian mantle plume. Changes in the composition of depleted components are dominantly controlled by the upper mantle tectonic configurations at the time of eruption (i.e., proximity to a mid-ocean ridge), as this effect overwhelms the signal imparted by potentially sampling different lower mantle components through time.more » « less
-
The Northwestern Hawaiian Ridge is an age-progressive volcanic chain sourced from the Hawaiian mantle plume. Proximal to the Northwestern Hawaiian Ridge are several clusters of smaller seamounts and ridges with limited age constraints and unknown geodynamic origins. This study presents new bathymetric data and 40Ar/39Ar age determinations from lava flow samples recovered by remotely operated vehicle (ROV) from two east–west-trending chains of seamounts that lie north of the Pūhāhonu and Mokumanamana volcanoes. The previously unexplored Naifeh Chain (28°48′N,167°48′W) and Plumeria Chain (25°36′N, 164°35′W) contain five volcanic structures each, including three guyots in the Naifeh Chain. New 40Ar/39Ar age determinations indicate that the Naifeh Chain formed ca. 88 Ma and the Plumeria Chain ca. 85 Ma. The Cretaceous ages, coupled with a perpendicular orientation of the seamounts relative to absolute Pacific plate motion at that time, eliminate either a Miocene Hawaiian volcanic arch or Cretaceous mantle-plume origin. The seamounts lie on oceanic crust that is modeled to be 10–15 Ma older than the corresponding seamounts. Here, two models are put forth to explain the origin of these enigmatic seamount chains as well as the similar nearby Mendelssohn Seamounts. (1) Diffuse lithospheric extension results in the formation of these seamounts until the initiation of the Kula-Pacific spreading center in the north at 84–79 Ma, which alleviates the tension. (2) Shear-driven upwelling of enriched mantle material beneath young oceanic lithosphere results in an age-progressive seamount track that is approximately perpendicular to the spreading ridge. Here we show that all sampled seamounts proximal to the Northwestern Hawaiian Ridge are intraplate in nature, but their formations can be attributed to both plume and plate processes.more » « less
-
Abstract Major- and trace-element data together with Nd and Sr isotopic compositions and 40Ar/39Ar age determinations were obtained for Late Cretaceous and younger volcanic rocks from north-central Colorado, USA, in the Southern Rocky Mountains to assess the sources of mantle-derived melts in a region underlain by thick (≥150 km) continental lithosphere. Trachybasalt to trachyandesite lava flows and volcanic cobbles of the Upper Cretaceous Windy Gap Volcanic Member of the Middle Park Formation have low εNd(t) values from −3.4 to −13, 87Sr/86Sr(t) from ~0.705 to ~0.707, high large ion lithophile element/high field strength element ratios, and low Ta/Th (≤0.2) values. These characteristics are consistent with the production of mafic melts during the Late Cretaceous to early Cenozoic Laramide orogeny through flux melting of asthenosphere above shallowly subducting and dehydrating oceanic lithosphere of the Farallon plate, followed by the interaction of these melts with preexisting, low εNd(t), continental lithospheric mantle during ascent. This scenario requires that asthenospheric melting occurred beneath continental lithosphere as thick as 200 km, in accordance with mantle xenoliths entrained in localized Devonian-age kimberlites. Such depths are consistent with the abundances of heavy rare earth elements (Yb, Sc) in the Laramide volcanic rocks, which require parental melts derived from garnet-bearing mantle source rocks. New 40Ar/39Ar ages from the Rabbit Ears and Elkhead Mountains volcanic fields confirm that mafic magmatism was reestablished in this region ca. 28 Ma after a hiatus of over 30 m.y. and that the locus of volcanism migrated to the west through time. These rocks have εNd(t) and 87Sr/86Sr(t) values equivalent to their older counterparts (−3.5 to −13 and 0.7038–0.7060, respectively), but they have higher average chondrite-normalized La/Yb values (~22 vs. ~10), and, for the Rabbit Ears volcanic field, higher and more variable Ta/Th values (0.29–0.43). The latter are general characteristics of all other post–40 Ma volcanic rocks in north-central Colorado for which literature data are available. Transitions from low to intermediate Ta/Th mafic volcanism occurred diachronously across southwest North America and are interpreted to have been a consequence of melting of continental lithospheric mantle previously metasomatized by aqueous fluids derived from the underthrusted Farallon plate. Melting occurred as remnants of the Farallon plate were removed and the continental lithospheric mantle was conductively heated by upwelling asthenosphere. A similar model can be applied to post–40 Ma magmatism in north-central Colorado, with periodic, east to west, removal of stranded remnants of the Farallon plate from the base of the continental lithospheric mantle accounting for the production, and western migration, of volcanism. The estimated depth of the lithosphere-asthenosphere boundary in north-central Colorado (~150 km) indicates that the lithosphere remains too thick to allow widespread melting of upwelling asthenosphere even after lithospheric thinning in the Cenozoic. The preservation of thick continental lithospheric mantle may account for the absence of oceanic-island basalt–like basaltic volcanism (high Ta/Th values of ~1 and εNd[t] > 0), in contrast to areas of southwest North America that experienced larger-magnitude extension and lithosphere thinning, where oceanic-island basalt–like late Cenozoic basalts are common.more » « less
-
Abstract The Hawaiian Ridge, a classic intraplate volcanic chain in the Central Pacific Ocean, has long attracted researchers due to its origin, eruption patterns, and impact on lithospheric deformation. Thought to arise from pressure‐release melting within a mantle plume, its mass‐induced deformation of Earth's surface depends on load distribution and lithospheric properties, including elastic thickness (Te). To investigate these features, a marine geophysical campaign was carried out across the Hawaiian Ridge in 2018. Westward of the island of O'ahu, a seismic tomographic image, validated by gravity data, reveals a large mass of volcanic material emplaced on the oceanic crust, flanked by an apron of volcaniclastic material filling the moat created by plate flexure. The ridge adds ∼7 km of material to pre‐existing ∼6‐km‐thick oceanic crust. A high‐velocity and high‐density core resides within the volcanic edifice, draped by alternating lava flows and mass wasting material. Beneath the edifice, upper mantle velocities are slightly higher than that of the surrounding mantle, and there is no evidence of extensive magmatic underplating of the crust. There is ∼3.5 km of downward deflection of the sediment‐crust and crust‐mantle boundaries due to flexure in response to the volcanic load. At Ka'ena Ridge, the volcanic edifice's height and cross‐sectional area are no more than half as large as those determined at Hawai'i Island. Together, these studies confirm that volcanic loads to the west of Hawai'i are largely compensated by flexure. Comparisons to the Emperor Seamount Chain confirm the Hawaiian Ridge's relatively stronger lithospheric rigidity.more » « less
An official website of the United States government
