skip to main content

Title: Ellipsars: Ring-like Explosions from Flattened Stars

The stellar cataclysms producing astronomical transients have long been modeled as either a point-like explosion or jet-like engine ignited at the center of a spherically symmetric star. However, many stars are observed, or are expected on theoretical grounds, not to be precisely spherically symmetric, but rather to have a slightly flattened geometry similar to that of an oblate spheroid. Here we present axisymmetric two-dimensional hydrodynamical simulations of the dynamics of point-like explosions initiated at the center of an aspherical massive star with a range of oblateness. We refer to these exploding aspherical stars as “ellipsars” in reference to the elliptical shape of the isodensity contours of their progenitors in the two-dimensional axisymmetric case. We find that ellipsars are capable of accelerating expanding rings of relativistic ejecta. which may lead to the production of astronomical transients including low-luminosity gamma-ray bursts, relativistic supernovae, and fast blue optical transients

more » « less
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Medium: X Size: Article No. L16
Article No. L16
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The effects of strong magnetic fields on the deconfinement phase transition expected to take place in the interior of massive neutron stars are studied in detail for the first time. For hadronic matter, the very general density-dependent relativistic mean field model is employed, while the simple, but effective vector-enhanced bag model is used to study quark matter. Magnetic-field effects are incorporated into the matter equation of state and in the general-relativity solutions, which also satisfy Maxwell’s equations. We find that for large values of magnetic dipole moment, the maximum mass, canonical mass radius, and dimensionless tidal deformability obtained for stars using spherically symmetric Tolman–Oppenheimer–Volkoff (TOV) equations and axisymmetric solutions attained through the LORENE library differ considerably. The deviations depend on the stiffness of the equation of state and on the star mass being analyzed. This points to the fact that, unlike what was assumed previously in the literature, magnetic field thresholds for the approximation of isotropic stars and the acceptable use of TOV equations depend on the matter composition and interactions.

    more » « less

    The explosion outcome and diagnostics of core-collapse supernovae depend sensitively on the nature of the stellar progenitor, but most studies to date have focused exclusively on one-dimensional, spherically symmetric massive star progenitors. We present some of the first core-collapse supernovae simulations of three-dimensional massive star supernovae progenitors, a 12.5- and a 15-M⊙ model, evolved in three dimensions from collapse to bounce through explosion with the radiation-hydrodynamic code fornax. We compare the results using those starting from three-dimensional progenitors to three-dimensional simulations of spherically symmetric, one-dimensional progenitors of the same mass. We find that the models evolved in three dimensions during the final stages of massive star evolution are more prone to explosion. The turbulence arising in these multidimensional initial models serves as seed turbulence that promotes shock revival. Detection of gravitational waves and neutrinos signals could reveal signatures of pre-bounce turbulence.

    more » « less

    The coalescence of two neutron stars is accompanied by the emission of gravitational waves, and can also feature electromagnetic counterparts powered by mass ejecta and the formation of a relativistic jet after the merger. Since neutron stars can feature strong magnetic fields, the non-trivial interaction of the neutron star magnetospheres might fuel potentially powerful electromagnetic transients prior to merger. A key process powering those precursor transients is relativistic reconnection in strong current sheets formed between the two stars. In this work, we provide a detailed analysis of how the twisting of the common magnetosphere of the binary leads to an emission of electromagnetic flares, akin to those produced in the solar corona. By means of relativistic force-free electrodynamics simulations, we clarify the role of different magnetic field topologies in the process. We conclude that flaring will always occur for suitable magnetic field alignments, unless one of the neutron stars has a magnetic field significantly weaker than the other.

    more » « less

    The astronomical transient AT2018cow is the closest example of the new class of luminous, fast blue optical transients (FBOTs). Liverpool telescope RINGO3 observations of AT 2018cow are reported here, which constitute the earliest polarimetric observations of an FBOT. At $5.7\, \mathrm{days}$ post-explosion, the optical emission of AT2018cow exhibited a chromatic polarization spike that reached $\sim 7{{\ \rm per\ cent}}$ at red wavelengths. This is the highest intrinsic polarization recorded for a non-relativistic explosive transient and is observed in multiple bands and at multiple epochs over the first night of observations, before rapidly declining. The apparent wavelength dependence of the polarization may arise through depolarization or dilution of the polarized flux, due to conditions in AT 2018cow at early times. A second ‘bump’ in the polarization is observed at blue wavelengths at $\sim 12\, \mathrm{days}$. Such a high polarization requires an extremely aspherical geometry that is only apparent for a brief period (<1 d), such as shock breakout through an optically thick disk. For a disk-like configuration, the ratio of the thickness to radial extent must be $\sim 10{{\ \rm per\ cent}}$.

    more » « less
  5. Abstract

    Highly magnetized neutron stars are promising candidates to explain some of the most peculiar astronomical phenomena, for instance, fast radio bursts, gamma-ray bursts, and superluminous supernovae. Pulsations of these highly magnetized neutron stars are also speculated to produce detectable gravitational waves. In addition, pulsations are important probes of the structure and equation of state of the neutron stars. The major challenge in studying the pulsations of highly magnetized neutron stars is the demanding numerical cost of consistently solving the nonlinear Einstein and Maxwell equations under minimum assumptions. With the recent breakthroughs in numerical solvers, we investigate pulsation modes of non-rotating neutron stars which harbour strong purely toroidal magnetic fields of 1015−17G through two-dimensional axisymmetric general-relativistic magnetohydrodynamics simulations. We show that stellar oscillations are insensitive to magnetization effects until the magnetic to binding energy ratio goes beyond 10%, where the pulsation mode frequencies are strongly suppressed. We further show that this is the direct consequence of the decrease in stellar compactness when the extreme magnetic fields introduce strong deformations of the neutron stars.

    more » « less