Abstract The diurnal cycle (DC) in the cirrus canopy of tropical cyclones (TCs) is a well-documented phenomenon. While early studies linked the DC in the area of the cirrus canopy to a DC in the strength of eyewall convection, later studies considered it a direct response to the DC of radiation in the cirrus canopy. In this study, an idealized linear model is used to examine the extent to which linear dynamics can capture the DC in TCs, in particular the transition between balanced and radiating responses to diurnal heating. The model heat forcing is physically motivated by the diabatic heating output from a realistic simulation, which illustrates the presence of a DC in moist convective heating and radiative heating in the eyewall, and a DC in radiative heating in the cirrus canopy. This study finds that the DCs of heating in the eyewall yield a response that is restricted to inside the RMW by the high inertial stability in the inner core. The DC of radiative heating in the cirrus canopy yields a response throughout the entire cyclone. Lower-frequency responses, of diurnal and semidiurnal frequency, are balanced throughout much of the cyclone. High-frequency waves with periods under 8 h, created at sunrise and sunset, can radiate outward and downward. These results indicate that diurnal responses are balanced in the majority of a TC and originate in the cirrus canopy, instead of the eyewall. The DC in cirrus canopy vertical motion also appears to originate in the cirrus canopy.
more »
« less
The Spatiotemporal Evolution of the Diurnal Cycle in Two WRF Simulations of Tropical Cyclones
Abstract The properties of diurnal variability in tropical cyclones (TCs) and the mechanisms behind them remain an intriguing aspect of TC research. This study provides a comprehensive analysis of diurnal variability in two simulations of TCs to explore these mechanisms. One simulation is a well-known Hurricane Nature Run (HNR1), which is a realistic simulation of a TC produced using the Weather Research and Forecasting (WRF) Model. The other simulation is a realistic simulation produced using WRF of Hurricane Florence (2018) using hourly ERA5 data as input. Empirical orthogonal functions and Fourier filtering are used to analyze diurnal variability in the TCs. In both simulations a diurnal squall forms at sunrise in the inner core and propagates radially outward and intensifies until midday. At midday the upper-level outflow strengthens, surface inflow weakens, and the cirrus canopy reaches its maximum height and radial extent. At sunset and overnight, the surface inflow is stronger, and convection inside the RMW peaks. Therefore, two diurnal cycles of convection exist in the TCs with different phases of maxima: eyewall convection at sunset and at night, and rainband convection in the early morning. This study finds that the diurnal pulse in the cirrus canopy is not advectively driven, nor can it be attributed to weaker inertial stability at night; rather, the results indicate direct solar heating as a mechanism for cirrus canopy lifting and enhanced daytime outflow. These results show a strong diurnal modulation of tropical cyclone structure, and are consistent with other recent observational and modeling studies of the TC diurnal cycle.
more »
« less
- Award ID(s):
- 1654831
- PAR ID:
- 10367604
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 79
- Issue:
- 4
- ISSN:
- 0022-4928
- Format(s):
- Medium: X Size: p. 1021-1043
- Size(s):
- p. 1021-1043
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Observations of the diurnal cycle in tropical cyclones (TCs) systematically indicate a ∼12‐hr offset between peak rainfall rate and the maximum height of anvil clouds in the TC cloud canopy. This phasing conflicts with archetypal models of organized deep convection, which suggest a tight coupling between rainfall, vertical cloud growth, and anvil clouds. We show that this phasing owes to the bimodal diurnal evolution of the transverse circulation, which peaks nocturnally from low–midlevels, and during daytime in the upper troposphere. The bottom‐heavy nocturnal circulation state is driven by latent heating from nocturnally invigorated deep convection, while the top‐heavy daytime state is the thermally direct circulation response to strong shortwave‐cloud warming in the optically thick TC cloud canopy. This daytime upper‐level circulation response manifests in a lifting of the maximum height of the TC outflow and, in turn, a lifting and invigoration of the upper‐level anvil clouds of the TC cloud canopy.more » « less
-
Upper-level static stability ( N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2evolution of TCs. These N2tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.more » « less
-
The NOAA G-IV aircraft routinely measures vertical aircraft acceleration from the inertial navigation system at 1 Hz. The data provide a measure of turbulence on a 250-m horizontal scale over a layer from 12.8- to 14.8-km elevation. Turbulence in this layer of tropical cyclones was largest by 35%–40% in the inner 200 km of radius and decreased monotonically outward to the 1000-km radius. Turbulence in major hurricanes exceeded that in weaker tropical cyclones. Turbulence data points were divided among three regions of the tropical cyclone: cirrus canopy; outside the cirrus canopy; and a transition zone between them. Without exception, turbulence was greater within the canopy and weaker outside the canopy. Nighttime turbulence exceeded daytime turbulence for all radii, especially within the cirrus canopy, implicating radiative forcing as a factor in turbulence generation. A case study of widespread turbulence in Hurricane Ivan (2004) showed that interactions between the hurricane outflow channel and westerlies to the north created a region of absolute vorticity of −6 × 10−5s−1in the upper troposphere. Outflow accelerated from the storm center into this inertially unstable region, and visible evidence for turbulence and transverse bands of cirrus appeared radially inward of the inertially unstable region. It is argued that both cloud-radiative forcing and the development of inertial instability within a narrow outflow layer were responsible for the turbulence. In contrast, a second case study (Isabel 2003) displayed strong near-core turbulence in the presence of large positive absolute vorticity and no local inertial instability. Peak turbulence occurred 100 km downwind of the eyewall convection.more » « less
-
Abstract This study revisits the issue of why tropical cyclones (TCs) develop more rapidly at lower latitudes, using ensemble axisymmetric numerical simulations and energy diagnostics based on the isentropic analysis, with the focus on the relative importance of the outflow-layer and boundary layer inertial stabilities to TC intensification and energy cycle. Results show that although lowering the outflow-layer Coriolis parameter and thus inertial stability can slightly strengthen the outflow, it does not affect the simulated TC development, whereas lowering the boundary layer Coriolis parameter largely enhances the secondary circulation and TC intensification as in the experiment with a reduced Coriolis parameter throughout the model atmosphere. This suggests that TC outflow is more likely a passive result of the convergent inflow in the boundary layer and convective updraft in the eyewall. The boundary layer inertial stability is found to control the convergent inflow in the boundary layer and depth of convection in the eyewall and thus the temperature of the energy sink in the TC heat engine, which determines the efficiency and overall mechanical output of the heat engine and thus TC intensification. It is also shown that the hypothesized isothermal and adiabatic compression legs at the downstream end of the outflow in the classical Carnot cycle are not supported in the thermodynamic cycle of the simulated TCs, implying that the hypothesized classical TC Carnot cycle is not closed. It is the theoretical maximum work of the heat engine, not the energy expenditure following the outflow downstream, that determines the mechanical work used to intensify a TC.more » « less
An official website of the United States government
