skip to main content


Title: 370 New Eclipsing Binary Candidates from TESS Sectors 1–26
Abstract

We present 370 candidate eclipsing binaries (EBs), identified from ∼510,000 short cadence TESS light curves. Our statistical criteria identify 5105 light curves with features consistent with eclipses (∼1% of the initial sample). After visual confirmation of the light curves, we have a final sample of 2288 EB candidates. Among these, we find 370 sources that were not included in the catalog recently published by Prša et al. We publish our full sample of 370 new EB candidates, and statistical features used for their identification, reported per observation sector.

 
more » « less
NSF-PAR ID:
10367625
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
Research Notes of the AAS
Volume:
6
Issue:
5
ISSN:
2515-5172
Format(s):
Medium: X Size: Article No. 96
Size(s):
["Article No. 96"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. We present a variability-, color-, and morphology-based classifier designed to identify multiple classes of transients and persistently variable and non-variable sources from the Zwicky Transient Facility (ZTF) Data Release 11 (DR11) light curves of extended and point sources. The main motivation to develop this model was to identify active galactic nuclei (AGN) at different redshift ranges to be observed by the 4MOST Chilean AGN/Galaxy Evolution Survey (ChANGES). That being said, it also serves as a more general time-domain astronomy study. Methods. The model uses nine colors computed from CatWISE and Pan-STARRS1 (PS1), a morphology score from PS1, and 61 single-band variability features computed from the ZTF DR11 g and r light curves. We trained two versions of the model, one for each ZTF band, since ZTF DR11 treats the light curves observed in a particular combination of field, filter, and charge-coupled device (CCD) quadrant independently. We used a hierarchical local classifier per parent node approach-where each node is composed of a balanced random forest model. We adopted a taxonomy with 17 classes: non-variable stars, non-variable galaxies, three transients (SNIa, SN-other, and CV/Nova), five classes of stochastic variables (lowz-AGN, midz-AGN, highz-AGN, Blazar, and YSO), and seven classes of periodic variables (LPV, EA, EB/EW, DSCT, RRL, CEP, and Periodic-other). Results. The macro-averaged precision, recall, and F1-score are 0.61, 0.75, and 0.62 for the g -band model, and 0.60, 0.74, and 0.61, for the r -band model. When grouping the four AGN classes (lowz-AGN, midz-AGN, highz-AGN, and Blazar) into one single class, its precision-recall, and F1-score are 1.00, 0.95, and 0.97, respectively, for both the g and r bands. This demonstrates the good performance of the model in classifying AGN candidates. We applied the model to all the sources in the ZTF/4MOST overlapping sky (−28 ≤ Dec ≤ 8.5), avoiding ZTF fields that cover the Galactic bulge (| gal_b | ≤ 9 and gal_l ≤ 50). This area includes 86 576 577 light curves in the g band and 140 409 824 in the r band with 20 or more observations and with an average magnitude in the corresponding band lower than 20.5. Only 0.73% of the g -band light curves and 2.62% of the r -band light curves were classified as stochastic, periodic, or transient with high probability ( P init ≥ 0.9). Even though the metrics obtained for the two models are similar, we find that, in general, more reliable results are obtained when using the g -band model. With it, we identified 384 242 AGN candidates (including low-, mid-, and high-redshift AGN and Blazars), 287 156 of which have P init ≥ 0.9. 
    more » « less
  2. ABSTRACT

    We conduct a systematic search for quasars with periodic variations from the archival photometric data of the Zwicky Transient Facility by cross-matching with the quasar catalogues of the Sloan Digital Sky Survey and Véron-Cetty and Véron. We first select out 184 primitive periodic candidates using the generalized Lomb–Scargle periodogram and autocorrelation function and then estimate their statistical significance of periodicity based on two red-noise models, i.e. damped random walk (DRW) and single power-law (SPL) models. As such, we finally identify 106 (DRW) and 86 (SPL) candidates with the most significant periodic variations out of 143 700 quasars. We further compare DRW and SPL models using Bayes factors, which indicate a relative preference of the SPL model for our primitive sample. We thus adopt the candidates identified with SPL as the final sample and summarize its basic properties. We extend the light curves of the selected candidates by supplying other archival survey data to verify their periodicity. However, only three candidates (with 6–8 cycles of periods) meet the selection criteria. This result clearly implies that, instead of being strictly periodic, the variability must be quasi-periodic or caused by stochastic red-noise. This exerts a challenge to the existing search approaches and calls for developing new effective methods.

     
    more » « less
  3. ABSTRACT

    We present second epoch optical spectra for 30 changing-look (CL) candidates found by searching for Type-1 optical variability in a sample of active galactic nuclei (AGNs) spectroscopically classified as Type 2. We use a random-forest-based light-curve classifier and spectroscopic follow-up, confirming 50 per cent of candidates as turning-on CLs. In order to improve this selection method and to better understand the nature of the not-confirmed CL candidates, we perform a multiwavelength variability analysis including optical, mid-infrared (MIR), and X-ray data, and compare the results from the confirmed and not-confirmed CLs identified in this work. We find that most of the not-confirmed CLs are consistent with weak Type 1s dominated by host-galaxy contributions, showing weaker optical and MIR variability. On the contrary, the confirmed CLs present stronger optical fluctuations and experience a long (from five to ten years) increase in their MIR fluxes and the colour W1–W2 over time. In the 0.2–2.3 keV band, at least four out of 11 CLs with available SRG/eROSITA detections have increased their flux in comparison with archival upper limits. These common features allow us to select the most promising CLs from our list of candidates, leading to nine sources with similar multiwavelength photometric properties to our CL sample. The use of machine learning algorithms with optical and MIR light curves will be very useful to identify CLs in future large-scale surveys.

     
    more » « less
  4. ABSTRACT

    We present multi-epoch spectroscopic follow-up of a sample of ellipsoidal variables selected from Gaia Data Release 3 (DR3) as candidates for hosting quiescent black holes (BHs) and neutron stars (NSs). Our targets were identified as BH/NS candidates because their optical light curves – when interpreted with models that attribute variability to tidal distortion of a star by a companion that contributes negligible light – suggest that the companions are compact objects. From the likely BH/NS candidates identified in recent work accompanying Gaia DR3, we select 14 of the most promising targets for follow-up. We obtained spectra for each object at 2–10 epochs, strategically observing near conjunction to best constrain the radial velocity semi-amplitude. From the measured semi-amplitudes of the radial velocity curves, we derive minimum companion masses of $M_{2,\, \rm min} \le 0.5 \, {\rm M}_{\odot }$ in all cases. Assuming random inclinations, the typical inferred companion mass is $M_2 \sim 0.15\, {\rm M}_{\odot }$. This makes it unlikely that any of these systems contain a BH or NS, and we consider alternative explanations for the observed variability. We can best reproduce the observed light curves and radial velocities with models for unequal-mass contact binaries with star-spots. Some of the objects in our sample may also be detached main-sequence binaries, or even single stars with pulsations or star-spot variability masquerading as ellipsoidal variation. We provide recommendations for future spectroscopic efforts to further characterize this sample and more generally to search for compact object companions in close binaries.

     
    more » « less
  5. ABSTRACT

    The scarce optical variability studies in spectrally classified Type 2 active galactic nuclei (AGNs) have led to the discovery of anomalous objects that are incompatible with the simplest unified models (UMs). This paper focuses on the exploration of different variability features that allow to distinguish between obscured, Type 2 AGNs and the variable, unobscured Type 1s. We analyse systematically the Zwicky Transient Facility, 2.5-yr-long light curves of ∼15 000 AGNs from the Sloan Digital Sky Survey Data Release 16, which are generally considered Type 2s due to the absence of strong broad emission lines (BELs). Consistent with the expectations from the UM, the variability features are distributed differently for distinct populations, with spectrally classified weak Type 1s showing one order of magnitude larger variances than the Type 2s. We find that the parameters given by the damped random walk model lead to broader H α equivalent width for objects with τg > 16 d and long-term structure function SF∞, g > 0.07 mag. By limiting the variability features, we find that ∼11 per cent of Type 2 sources show evidence for optical variations. A detailed spectral analysis of the most variable sources (∼1 per cent of the Type 2 sample) leads to the discovery of misclassified Type 1s with weak BELs and changing-state candidates. This work presents one of the largest systematic investigations of Type 2 AGN optical variability to date, in preparation for future large photometric surveys.

     
    more » « less