skip to main content

Title: 370 New Eclipsing Binary Candidates from TESS Sectors 1–26

We present 370 candidate eclipsing binaries (EBs), identified from ∼510,000 short cadence TESS light curves. Our statistical criteria identify 5105 light curves with features consistent with eclipses (∼1% of the initial sample). After visual confirmation of the light curves, we have a final sample of 2288 EB candidates. Among these, we find 370 sources that were not included in the catalog recently published by Prša et al. We publish our full sample of 370 new EB candidates, and statistical features used for their identification, reported per observation sector.

; ;
Publication Date:
Journal Name:
Research Notes of the AAS
Page Range or eLocation-ID:
Article No. 96
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this

    The period-change rate (PCR) of pulsating variable stars is a useful probe of changes in their interior structure, and thus of their evolutionary stages. So far, the PCRs of classical Cepheids in the Large Magellanic Cloud (LMC) have been explored in a limited sample of the total population of these variables. Here, we use a template-based method to build observed-minus-computed (O − C) period diagrams, from which we can derive PCRs for these stars by taking advantage of the long time baseline afforded by the Digital Access to a Sky Century @ Harvard light curves, combined with additional data from the Optical Gravitational Lensing Experiment, the MAssive Compact Halo Object project, Gaia’s Data Release 2, and in some cases the All-Sky Automated Survey. From an initial sample of 2315 sources, our method provides an unprecedented sample of 1303 LMC classical Cepheids with accurate PCRs, the largest for any single galaxy, including the Milky Way. The derived PCRs are largely compatible with theoretically expected values, as computed by our team using the Modules for Experiments in Stellar Astrophysics code, as well as with similar previous computations available in the literature. Additionally, five long-period ($P\,\gt\, 50\, \rm {d}$) sources display a cyclic behaviourmore »in their O − C diagrams, which is clearly incompatible with evolutionary changes. Finally, on the basis of their large positive PCR values, two first-crossing Cepheid candidates are identified.

    « less

    We present the results of the analysis of Type II and anomalous Cepheids using the data from the Kepler K2 mission. The precise light curves of these pulsating variable stars are the key to study the details of their pulsation, such as the period-doubling effect or the presence of additional modes. We applied the Automated Extended Aperture Photometry (autoEAP) to obtain the light curves of the targeted variable stars which were observed. The light curves were Fourier analysed. We investigated 12 stars observed by the K2 mission, seven Type II, and five anomalous Cepheids. Among the Type II Cepheids, EPIC 210622262 shows period-doubling, and four stars have modulation present in their light curves which are different from the period-doubling effect. We calculated the high-order Fourier parameters for the short-period Cepheids. We also determined physical parameters by fitting model atmospheres to the spectral energy distributions. The determined distances using the parallaxes measured by the Gaia space telescope have limited precision below 16 mag for these types of pulsating stars, regardless if the inverse method is used or the statistical method to calculate the distances. The BaSTI evolutionary models were compared to the luminosities and effective temperatures. Most of the Type IImore »Cepheids are modelled with low metallicity models, but for a few of them solar-like metallicity ([Fe/H] = 0.06) model is required. The anomalous Cepheids are compared to low-metallicity single stellar models. We do not see signs of binarity among our sample stars.

    « less
  3. Abstract

    Using ultraviolet (UV) light curves, we constrain the circumstellar environments of 1080 Type Ia supernovae (SNe Ia) withinz< 0.5 from archival Galaxy Evolution Explorer (GALEX) observations. All SNe Ia are required to have pre- and post-explosion GALEX observations to ensure adequate subtraction of the host-galaxy flux. Using the late-time GALEX observations, we look for the UV excess expected from any interaction between the SN ejecta and circumstellar material (CSM). Four SNe Ia are detected near maximum light, and we compare the GALEX photometry to archival data. However, we find that none of our targets show convincing evidence of CSM interaction. A recent Hubble Space Telescope (HST) survey estimates that ∼6% of SNe Ia may interact with distant CSM, but statistical inferences are complicated by the small sample size and selection effects. By injecting model light curves into our data and then recovering them, we constrain a broad range of CSM interactions based on the CSM interaction start time and the maximum luminosity. Combining our GALEX nondetections with the HST results, we constrain occurrence of late-onset CSM interaction among SNe Ia with moderate CSM interaction, similar to that observed in PTF11kx, tofCSM≲ 5.1% between 0 and 500 days after discoverymore »and ≲2.7% between 500 and 1000 days after discovery at 90% confidence. For weaker CSM interactions similar to SN 2015cp, we obtain limits of ≲16% and ≲4.8%, respectively, for the same time ranges.

    « less

    We present the results of a search for binary hot subdwarf stars in photometric data from the Transiting Exoplanet Survey Satellite (TESS). The sample of objects used in this work was a byproduct of another search for pulsating hot subdwarfs, which resulted in the discovery of nearly 400 non-pulsating variable candidates. The periodogram for each object was calculated and a frequency signal with one or more harmonics above the 4 σ detection threshold was used to consider the candidate as a possible binary system. The type of variability was subsequently confirmed by visual inspection. We present a list of 46 binary system candidates that were not previously known as binaries. We also analysed a few example light curves to demonstrate the importance of double checking the variability of the source in the TESS light curves corrected for instrumental signatures. Four objects, TIC 55753808, TIC 118412596, TIC 4999380, and TIC 68834079, which show variations in the TESS-calibrated fluxes, were actually found to be constant. We also found that it might be more appropriate to increase the commonly used  4σ detection threshold in order to avoid the detection of multiple spurious peaks in the periodograms or Fourier transform of the TESS light curves.

  5. Abstract

    Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲z≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-zHST data with 42 SNe Ia atz< 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter,w. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5σ−2.5σsignificance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 +w= −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measureH0=more »75.9 ± 2.2 km s−1Mpc−1from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versusH0= 71.2 ± 3.8 km s−1Mpc−1using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 +w= −0.10 ± 0.09, and with optical and NIR data combined, we find 1 +w= −0.06 ± 0.07; these shifts of up to ∼0.11 inwcould point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-zsamples, new light-curve models, calibration improvements, and eventually by building high-zsamples from the Roman Space Telescope.

    « less