skip to main content


Title: Aerosol capture and coronavirus spike protein deactivation by enzyme functionalized antiviral membranes
Abstract

The airborne nature of coronavirus transmission makes it critical to develop new barrier technologies that can simultaneously reduce aerosol and viral spread. Here, we report nanostructured membranes with tunable thickness and porosity for filtering coronavirus-sized aerosols, combined with antiviral enzyme functionalization that can denature spike glycoproteins of the SARS-CoV-2 virus in low-hydration environments. Thin, asymmetric membranes with subtilisin enzyme and methacrylic functionalization show more than 98.90% filtration efficiency for 100-nm unfunctionalized and protein-functionalized polystyrene latex aerosol particles. Unfunctionalized membranes provided a protection factor of 540 ± 380 for coronavirus-sized particle, above the Occupational Safety and Health Administration’s standard of 10 for N95 masks. SARS-CoV-2 spike glycoprotein on the surface of coronavirus-sized particles was denatured in 30 s by subtilisin enzyme-functionalized membranes with 0.02-0.2% water content on the membrane surface.

 
more » « less
Award ID(s):
2030217
NSF-PAR ID:
10367640
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Materials
Volume:
3
Issue:
1
ISSN:
2662-4443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease that began in 2019 (COVID-19), has been responsible for 1.4 million deaths worldwide as of 13 November 2020. Because at the time of writing no vaccine is yet available, a rapid diagnostic assay is very urgently needed. Herein, we present the development of anti-spike antibody attached gold nanoparticles for the rapid diagnosis of specific COVID-19 viral antigen or virus via a simple colorimetric change observation within a 5 minute time period. For rapid and highly sensitive identification, surface enhanced Raman spectroscopy (SERS) was employed using 4-aminothiophenol as a reporter molecule, which is attached to the gold nanoparticle via an Au–S bond. In the presence of COVID-19 antigen or virus particles, owing to the antigen–antibody interaction, the gold nanoparticles undergo aggregation, changing color from pink to blue, which allows for the determination of the presence of antigen or virus very rapidly by the naked eye, even at concentrations of 1 nanogram (ng) per mL for COVID-19 antigen and 1000 virus particles per mL for SARS-CoV-2 spike protein pseudotyped baculovirus. Importantly, the aggregated gold nanoparticles form “hot spots” to provide very strong SERS signal enhancement from anti-spike antibody and 4-aminothiophenol attached gold nanoparticles via light–matter interactions. Finite-difference time-domain (FDTD) simulation data indicate a 4-orders-of-magnitude Raman enhancement in “hot spot” positions when gold nanoparticles form aggregates. Using a portable Raman analyzer, our reported data demonstrate that our antibody and 4-aminothiophenol attached gold nanoparticle-based SERS probe has the capability to detect COVID-19 antigen even at a concentration of 4 picograms (pg) per mL and virus at a concentration of 18 virus particles per mL within a 5 minute time period. Using HEK293T cells, which express angiotensin-converting enzyme 2 (ACE2), by which SARS-CoV-2 enters human cells, we show that anti-spike antibody attached gold nanoparticles have the capability to inhibit infection by the virus. Our reported data show that antibody attached gold nanoparticles bind to SARS-CoV-2 spike protein, thereby inhibiting the virus from binding to cell receptors, which stops virus infection and spread. It also has the capability to destroy the lipid membrane of the virus. 
    more » « less
  2. Abstract Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 spike receptor-binding domain (RBD) in saliva samples acquired noninvasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg ml −1 for spike RBD and 110.38 ± 9.00 pg ml −1 for spike S1) as well as fast response time (∼30 min), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng ml −1 and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests. 
    more » « less
  3. The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant. 
    more » « less
  4. Abstract

    Soluble angiotensin‐converting enzyme 2 (ACE2) can act as a decoy molecule that neutralizes severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) by blocking spike (S) proteins on virions from binding ACE2 on host cells. Based on structural insights of ACE2 and S proteins, we designed a “muco‐trapping” ACE2‐Fc conjugate, termed ACE2‐(G4S)6‐Fc, comprised of the extracellular segment of ACE2 (lacking the C‐terminal collectrin domain) that is linked to mucin‐binding IgG1‐Fc via an extended glycine‐serine flexible linker. ACE2‐(G4S)6‐Fc exhibits substantially greater binding affinity and neutralization potency than conventional full length ACE2‐Fc decoys or similar truncated ACE2‐Fc decoys without flexible linkers, possessing picomolar binding affinity and strong neutralization potency against pseudovirus and live virus. ACE2‐(G4S)6‐Fc effectively trapped fluorescent SARS‐CoV‐2 virus like particles in fresh human airway mucus and was stably nebulized using a commercial vibrating mesh nebulizer. Intranasal dosing of ACE2‐(G4S)6‐Fc in hamsters as late as 2 days postinfection provided a 10‐fold reduction in viral load in the nasal turbinate tissues by Day 4. These results strongly support further development of ACE2‐(G4S)6‐Fc as an inhaled immunotherapy for COVID‐19, as well as other emerging viruses that bind ACE2 for cellular entry.

     
    more » « less
  5. Abstract

    Sensing of viral antigens has become a critical tool in combating infectious diseases. Current sensing techniques have a tradeoff between sensitivity and time of detection; with 10–30 min of detection time at a relatively low sensitivity and 6–12 h of detection at a high (picomolar) sensitivity. In this research, uniquely nanoengineered interfaces are demonstrated on 3D electrodes that enable the detection of spike antigens of SARS‐CoV‐2 and their variants in seconds at femtomolar concentrations with excellent specificity, thus, overcoming this tradeoff. The 3D electrodes, manufactured using a high‐resolution aerosol jet 3D nanoprinter, consist of a microelectrode array of sintered gold nanoparticles coated with graphene and antibodies specific to severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) spike antigens. An impedance‐based sensing modality is employed to sense several pseudoviruses of SARS‐CoV‐2 variants of concern (VOCs). This device is sensitive to most of the pseudoviruses of SARS‐CoV‐2 VOCs. A high sensitivity of 100 fm, along with a low limit‐of‐detection of 9.2 fmwithin a test range of 0.1–1000 pm, and a detection time of 43 s are shown. This work illustrates that effective nano‐bioengineering of interfaces can be used to create an ultrafast and ultrasensitive healthcare diagnostic tool for combating emerging infections.

     
    more » « less