The elastic moduli of tissues are connected to their states of health and function. The epithelial monolayer is a simple, minimal, tissue model that is often used to gain understanding of mechanical behavior at the cellular or multi-cellular scale. Here we investigate how the elastic modulus of Madin Darby Canine Kidney (MDCK) cells depends on their packing density. Rather than measuring elasticity at the sub-cellular scale with local probes, we characterize the monolayer at the multicellular scale, as one would a thin slab of elastic material. We use a micro-indentation system to apply gentle forces to the apical side of MDCK monolayers, applying a normal force to approximately 100 cells in each experiment. In low-density confluent monolayers, we find that the elastic modulus decreases with increasing cell density. At high densities, the modulus appears to plateau. This finding will help guide our understanding of known collective behaviors in epithelial monolayers and other tissues where variations in cell packing density are correlated with cell motion.
more »
« less
Microindentation of Fluid‐Filled Cellular Domes Reveals the Contribution of RhoA‐ROCK Signaling to Multicellular Mechanics
Abstract Cellular mechanics encompass both mechanical properties that resist forces applied by the external environment and internally generated forces applied at the location of cell–cell and cell–matrix junctions. Here, the authors demonstrate that microindentation of cellular domes formed by cell monolayers that locally lift off the substrate provides insight into both aspects of cellular mechanics in multicellular structures. Using a modified Hertz contact equation, the force–displacement curves generated by a micro‐tensiometer are used to measure an effective dome stiffness. The results indicate the domes are consistent with the Laplace–Young relationship for elastic membranes, regardless of biochemical modulation of the RhoA‐ROCK signaling axis. In contrast, activating RhoA, and inhibiting ROCK both alter the relaxation dynamics of the domes deformed by the micro‐tensiometer, revealing an approach to interrogate the role of RhoA‐ROCK signaling in multicellular mechanics. A finite element model incorporating a Mooney–Rivlin hyperelastic constitutive equation to describe monolayer mechanics predicts effective stiffness values that are consistent with the micro‐tensiometer measurements, verifying previous measurements of the response of cell monolayers to tension. Overall, these studies establish microindentation of fluid‐filled domes as an avenue to investigate the contribution of cell‐generated forces to the mechanics of multicellular structures.
more »
« less
- Award ID(s):
- 2034780
- PAR ID:
- 10367699
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 21
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction— In response to external stress, cells alter their morphology, metabolic activity, and functions to mechanically adapt to the dynamic, local environment through cell allostasis. To explore mechanotransduction in cellular allostasis, we applied an integrated micromechanical system that combines an ‘ultrasound tweezers’-based mechanical stressor and a Förster resonance energy transfer (FRET)-based molecular force biosensor, termed “actinin-sstFRET,” to monitor in situ single-cell allostasis in response to transient stimulation in real time. Methods— The ultrasound tweezers utilize 1 Hz, 10-second transient ultrasound pulses to acoustically excite a lipid-encapsulated microbubble, which is bound to the cell membrane, and apply a pico- to nano-Newton range of forces to cells through an RGD-integrin linkage. The actinin-sstFRET molecular sensor, which engages the actin stress fibers in live cells, is used to map real-time actomyosin force dynamics over time. Then, the mechanosensitive behaviors were examined by profiling the dynamics in Ca2+ influx, actomyosin cytoskeleton (CSK) activity, and GTPase RhoA signaling to define a single-cell mechanical allostasis. Results—By subjecting a 1 Hz, 10-second physical stress, single vascular smooth muscle cells (VSMCs) were observed to remodeled themselves in a biphasic mechanical allostatic manner within 30 minutes that caused them to adjust their contractility and actomyosin activities. The cellular machinery that underscores the vital role of CSK equilibrium in cellular mechanical allostasis, includes Ca2+ influx, remodeling of actomyosin CSK and contraction, and GTPase RhoA signaling. Mechanical allostasis was observed to be compromised in VSMCs from patients with type II diabetes mellitus (T2DM), which could potentiate an allostatic maladaptation. Conclusions— By integrating tools that simultaneously permit localized mechanical perturbation and map actomyosin forces, we revealed distinct cellular mechanical allostasis profiles in our micromechanical system. Our findings of cell mechanical allostasis and maladaptation provide the potential for mechanophenotyping cells to reveal their pathogenic contexts and their biophysical mediators that underlie multi-etiological diseases such as diabetes, hypertension, or aging.more » « less
-
ABSTRACT The intricate three-dimensional (3D) structures of multicellular organisms emerge through genetically encoded spatio-temporal patterns of mechanical stress. Cell atlases of gene expression during embryogenesis are now available for many organisms, but connecting these to the mechanical drivers of embryonic shape requires physical models of multicellular tissues that identify the relevant mechanical and geometric constraints, and an ability to measure mechanical stresses at single-cell resolution over time. Here we report significant steps towardsboththese goals. We describe a new mathematical theory for the mechanics of 3D multicellular aggregates involving the quasi-static balance of cellular pressures, surface tensions, and line tensions. Our theory yields a quantitatively accurate low-dimensional description for the time-varying geometric dynamics of 3D multicellular aggregates and, through the solution of a mechanical inverse problem, an image-based strategy for constructing spatio-temporal maps of the mechanical stresses driving morphogenesis in 3D. Using synthetic image data, we confirm the accuracy and robustness of our geometric and mechanical approaches. We then apply these approaches to segmented light sheet data, representing cellular membranes with isotropic resolution, to construct a 3D mechanical atlas for ascidian gastrulation. The atlas captures a surprisingly accurate low-dimensional description of ascidian gastrulation, revealing the adiabatic nature of the underlying mechanical dynamics. Mapping the inferred forces onto the invariant embryonic lineage reveals a rich correspondence between dynamically evolving cell states, patterns of cell division, and local regulation of cellular pressure and contractile stress. Thus, our mechanical atlas reveals a new view of ascidian gastrulation in which lineage-specific control over a complex heterogenous pattern of cellular pressure and contractile stress, integrated globally, governs the emergent dynamics of ascidian gastrulation.more » « less
-
Within multicellular living systems, cells coordinate their positions with spatiotemporal accuracy to form various tissue structures and control development. These arrangements can be regulated by tissue geometry, biochemical cues, as well as mechanical perturbations. However, how cells pack during dynamic three-dimensional multicellular architectures formation remains unclear. Here, examining a growing spherical multicellular system, human lung alveolospheres, we observe an emergence of hexagonal packing order and a structural transition of cells that comprise the spherical epithelium. Surprisingly, the cell packing behavior on the spherical surface of lung alveolospheres resembles hard-disks packing on spheres, where the less deformable cell nuclei act as effective “hard disks” and prevent cells from getting too close. Nucleus-to-cell size ratio increases during lung spheroids growth; as a result, we find more hexagon-concentrated cellular packing with increasing bond orientational order. Furthermore, by osmotically changing the compactness of cells on alveolospheres, we observe a more ordered packing when nucleus-to-cell size ratio increases, and vice versa. These more ordered cell packing characteristics are consistent with reduced cell dynamics, together suggesting that better cellular packing stabilizes local cell neighborhoods and may regulate more complex biological functions such as cellular maturation and tissue morphogenesis.more » « less
-
Abstract The clinical translation of mesenchymal stem cells (MSCs) is limited by population heterogeneity and inconsistent responses to engineered signals. Specifically, the extent in which MSCs respond to mechanical cues varies significantly across MSC lines. Although induced pluripotent stem cells (iPSCs) have recently emerged as a novel cell source for creating highly homogeneous MSC (iMSC) lines, cellular mechanosensing of iMSCs on engineered materials with defined mechanics is not well understood. Here, we tested the mechanosensing properties of three human iMSC lines derived from iPSCs generated using a fully automated platform. Stiffness-driven changes in morphology were comparable between MSCs and iMSCs cultured atop hydrogels of different stiffness. However, contrary to tissue derived MSCs, no significant changes in iMSC morphology were observed between iMSC lines atop different stiffness hydrogels, demonstrating a consistent response to mechanical signals. Further, stiffness-driven changes in mechanosensitive biomarkers were more pronounced in iMSCs than MSCs, which shows that iMSCs are more adaptive and responsive to mechanical cues than MSCs. This study reports that iMSCs are a promising stem cell source for basic and applied research due to their homogeneity and high sensitivity to engineered mechanical signals.more » « less
An official website of the United States government
