Below the seismogenic zone, faults are expressed as zones of distributed ductile strain in which minerals deform chiefly by crystal plastic and diffusional processes. We present a case study from the Caledonian frontal thrust system in northwest Scotland to better constrain the geometry, internal structure, and rheology of a major zone of reverse-sense shear below the brittle-to-ductile transition (BDT). Rocks now exposed at the surface preserve a range of shear zone conditions reflecting progressive exhumation of the shear zone during deformation. Field-based measurements of structural distance normal to the Moine Thrust Zone, which marks the approximate base of the shear zone, together with microstructural observations of active slip systems and the mechanisms of deformation and recrystallization in quartz, are paired with quantitative estimates of differential stress, deformation temperature, and pressure. These are used to reconstruct the internal structure and geometry of the Scandian shear zone from ~10 to 20 km depth. We document a shear zone that localizes upwards from a thickness of >2.5 km to <200 m with temperature ranging from ~450–350°C and differential stress from 15–225 MPa. We use estimates of deformation conditions in conjunction with independently calculated strain rates to compare between experimentally derived constitutive relationships and conditions observed inmore »
The southern Patagonian Andes record Late Cretaceous–Paleogene compressional inversion of the Rocas Verdes backarc basin (RVB) and development of the Patagonian fold-thrust belt (FTB). A ductile décollement formed in the middle crust and accommodated underthrusting, thickening, and tectonic burial of the continental margin (Cordillera Darwin Metamorphic Complex (CDMC)) beneath the RVB. We present new geologic mapping, quartz microstructure, and crystallographic preferred orientation (CPO) fabric analyses to document the kinematic evolution and deformation conditions of the décollement. Within the CDMC, the décollement is defined by a quartz/chlorite composite schistose foliation (S1-2) that is progressively refolded by two generations of noncylindrical, tight, and isoclinal folds (F3–F4). Strain intensifies near the top of the CDMC, forming a >5 km thick shear zone that is defined by a penetrative L-S tectonite (S2/L2) and progressive noncylindrical folding (F3). Younger kink folds and steeply inclined tight folds (F4) with both north- and south-dipping axial planes (S4) overprint D2 and D3 structures. Quartz textures from D2 fabrics show subgrain rotation and grain boundary migration recrystallization equivalent to regime 3, and quartz CPO patterns indicate mixed prism <a> and [c] slip systems with c-axis opening angles indicative of deformation temperatures between ~500° and >650°C. Approximately 40 km toward the more »
- Publication Date:
- NSF-PAR ID:
- 10367714
- Journal Name:
- Lithosphere
- Volume:
- 2022
- Issue:
- 1
- ISSN:
- 1941-8264
- Publisher:
- DOI PREFIX: 10.2113
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We postulate that the inverted metamorphic sequence in the Lesser Himalayan Sequence of the Himalayan orogen is a finite product of its deformation and temperature history. To explain the formation of this inverted metamorphic sequence across the Lesser Himalayan Sequence with a focus on the Main Central Thrust (MCT) in eastern Bhutan, we determined the metamorphic peak temperatures by Raman spectroscopy of carbonaceous material and established the deformation temperatures by Ti‐in‐quartz thermobarometry and quartz
c axis textures. These data were combined with thermochronology, including new and published40Ar/39Ar ages of muscovite and published apatite fission track, and apatite and zircon (U‐Th)/He ages. To obtain accurate metamorphic, deformation, and closure temperatures of thermochronological systems, pressures and cooling rates for the period of interest were derived by inverse modeling of multiple thermochronological data sets, and temperatures were determined by iterative calculations. The Raman spectroscopy of carbonaceous material results indicate two temperature sequences separated by a thrust. In the external sequence, peak temperatures are constant across the structural strike, consistent with the observed hinterland‐dipping duplex system. In the internal temperature sequence associated with the MCT shear zone, each geothermometer yields an apparent inverted temperature gradient although with different temperature ranges, and all temperatures appear tomore » -
Over 500 km2 of rock exposure in Fiordland, New Zealand records strain localization processes accompanying the formation of a steep, transpressional shear zone within the root of a Cretaceous continental magmatic arc. Here, we pair field observations with microstructural and petrographic analyses of the George Sound shear zone (GSSZ) to investigate how metamorphism and compositional variability influenced shear zone evolution in the lower continental crust. The northern portion of the 50 km-long GSSZ deforms a monzodioritic pluton where superposed mineral fabrics record a narrowing of the shear zone width over time. Early stage deformation was accommodated mostly by dynamic recrystallization of pyroxene and plagioclase, forming a steep zone of coarse, gneissic foliations over 10 km wide. Subsequent deformation created a 2 km-thick zone of mylonite containing fine-grained plagioclase, hornblende, biotite, and quartz. The latter three minerals formed during the hydration of older minerals, including igneous pyroxene. The change in mineralogy and grain size also produced thin (< 1 mm), weak layers that localized deformation in shear bands in the highest strain zones. The southern ~35 km of the GSSZ deforms a heterogeneous section of granite, diorite, and metasedimentary rock. In this area, the hydration of igneous assemblages also is pervasivemore »
-
Abstract Mantle xenoliths from the Southern Alps, New Zealand, provide insight into the origin of mantle seismic anisotropy related to the Australian‐Pacific plate boundary. Most xenoliths from within 100 km lateral distance of the Alpine Fault are coarse grained, but a small number are finer grained protomylonites. The protomylonites contain connected networks of fine grains with a different crystallographic preferred orientation (CPO) to coarse porphyroclasts in the same xenolith, suggesting that protomylonites and coarse‐grained samples record different deformation kinematics. The CPOs of fine grains in protomylonites have monoclinic symmetry, with the 2‐fold rotation axis normal to a plane that contains olivine [010] and orthopyroxene [100] maxima, suggesting that the protomylonite deformation involved significant simple shear. Some coarse‐grained samples contain unconnected lenses and layers of fine grains with the same CPO as the coarse grains. Microstructures suggest that these fine grains formed by subgrain rotation recrystallization and that protomylonites may represent an up‐strain progression of this microstructure, where the connectivity of fine grains has allowed them to localize shear and develop a new Alpine Fault CPO. The samples tell us about the state of the mantle at 25 Ma, in the early history of the plate boundary. If this suite of samples ismore »
-
Abstract Hydrothermal quartz veins from the Butte deposit display euhedral and mottled cathodoluminescent (CL) textures that reflect the growth and deformation history of quartz crystals. A CL-euhedral texture consists of oscillatory dark-light zonations that record primary precipitation from an aqueous fluid. The origin of a CL-mottled texture, which consists of irregularly distributed dark and light portions, is less clear. Previous work showed that in some veins, CL-euhedral and CL-mottled crystals coexist, but the processes leading to their formation and coexistence were unknown. We find that CL-mottled crystals occur predominantly along the wall rock fracture surface and in vein centers and that CL-euhedral cockscomb quartz protrudes from the mottled layers along the wall rock. We infer that the mottled crystals formed by strain-induced recrystallization that was preferentially accommodated by the rheologically weaker layers of noncockscomb quartz because cockscomb crystals are in hard glide orientations relative to adjacent noncockscomb layers. During strain, crystals in noncockscomb layers that are not initially susceptible to slip can rotate in their deforming matrix until they deform plastically. Some of the CL-mottled crystals exhibit a relict CL-euhedral texture (“ghost bands”) whereby bright bands have been blurred and deformed owing to Ti redistribution facilitated by grain boundary migration.more »