skip to main content


Title: Stellar core-merger-induced collapse: new formation pathways for black holes, Thorne–Żytkow objects, magnetars, and superluminous supernovae
ABSTRACT

Most neutron stars (NSs) and black holes (BHs) are believed to be the final remnants in the evolution of massive stars. In this study, we propose a new formation channel for the formation of BHs and peculiar NSs [specifically, magnetars and Thorne–Żytkow objects (T$\dot{\rm Z}$Os)], which we refer to as the core-merger-induced collapse (CMIC) model. This model involves the merger during a common-envelope phase of an oxygen/neon/magnesium composition white dwarf and the core of a hydrogen-rich or helium-rich non-degenerate star, leading to the creation of peculiar new types of objects. The results of binary population synthesis simulations show that the CMIC channel could make important contributions to the populations of (millisecond) pulsars, T$\dot{\rm Z}$Os, magnetars, and BHs. The possibility of superluminous supernovae powered by T$\dot{\rm Z}$Os, magnetars, and BHs formed through the CMIC model is also being investigated. Magnetars with immediate matter surroundings formed after the CMIC might be good sources for fast radio bursts.

 
more » « less
NSF-PAR ID:
10367715
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4802-4813
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Observations of X-ray binaries indicate a dearth of compact objects in the mass range from ∼2 − 5  M ⊙ . The existence of this (first mass) gap has been used to discriminate between proposed engines behind core-collapse supernovae. From LIGO/Virgo observations of binary compact remnant masses, several candidate first mass gap objects, either neutron stars (NSs) or black holes (BHs), were identified during the O3 science run. Motivated by these new observations, we study the formation of BH-NS mergers in the framework of isolated classical binary evolution, using population synthesis methods to evolve large populations of binary stars (Population I and II) across cosmic time. We present results on the NS to BH mass ratios ( q  =  M NS / M BH ) in merging systems, showing that although systems with a mass ratio as low as q  = 0.02 can exist, typically BH-NS systems form with moderate mass ratios q  = 0.1 − 0.2. If we adopt a delayed supernova engine, we conclude that ∼30% of BH-NS mergers may host at least one compact object in the first mass gap (FMG). Even allowing for uncertainties in the processes behind compact object formation, we expect the fraction of BH-NS systems ejecting mass during the merger to be small (from ∼0.6 − 9%). In our reference model, we assume: (i) the formation of compact objects within the FMG, (ii) natal NS/BH kicks decreased by fallback, (iii) low BH spins due to Tayler-Spruit angular momentum transport in massive stars. We find that ≲1% of BH-NS mergers will have any mass ejection and about the same percentage will produce kilonova bright enough to have a chance of being detected with a large (Subaru-class) 8 m telescope. Interestingly, all these mergers will have both a BH and an NS in the FMG. 
    more » « less
  2. ABSTRACT

    A narrow linear object extending ∼60 kpc from the centre of a galaxy at redshift z ∼ 1 has recently been discovered and interpreted as shocked gas filament forming stars. The host galaxy presents an irregular morphology, implying recent merger events. Supposing that each of the progenitor galaxies has a central supermassive black hole (SMBH) and the SMBHs are accumulated at the centre of the merger remnant, a fraction of them can be ejected from the galaxy with a high velocity due to interactions between SMBHs. When such a runaway SMBH (RSMBH) passes through the circumgalactic medium (CGM), converging flows are induced along the RSMBH path, and star formation could eventually be ignited. We show that the CGM temperature prior to the RSMBH perturbation should be below the peak temperature in the cooling function to trigger filament formation. While the gas is temporarily heated due to compression, the cooling efficiency increases, and gas accumulation becomes allowed along the path. When the CGM density is sufficiently high, the gas can cool down and develop a dense filament by z = 1. The mass and velocity of the RSMBH determine the scale of filament formation. Hydrodynamical simulations validate the analytical expectations. Therefore, we conclude that the perturbation by RSMBHs is a viable channel to form the observed linear object. Using the analytical model validated by simulations, we show that the CGM around the linear object to be warm ($T \lesssim 2 \times 10^5$ K) and dense ($n \gtrsim 2 \times 10^{-5} (T/2 \times 10^5 \, K)^{-1} \, {\rm cm^{-3}}$).

     
    more » « less
  3. ABSTRACT

    We explore implications of a range of black hole (BH) seeding prescriptions on the formation of the brightest $z$ ≳ 6 quasars in cosmological hydrodynamic simulations. The underlying galaxy formation model is the same as in the IllustrisTNG simulations. Using constrained initial conditions, we study the growth of BHs in rare overdense regions (forming $\gtrsim 10^{12}\, {\rm M}_{\odot }\,h^{-1}$ haloes by $z$ = 7) using a  (9 Mpc h−1)3 simulated volume. BH growth is maximal within haloes that are compact and have a low tidal field. For these haloes, we consider an array of gas-based seeding prescriptions wherein $M_{\mathrm{seed}}=10^4\!-\!10^6\, {\rm M}_{\odot }\,h^{-1}$ seeds are inserted in haloes above critical thresholds for halo mass and dense, metal-poor gas mass (defined as $\tilde{M}_{\mathrm{h}}$ and $\tilde{M}_{\mathrm{sf,mp}}$, respectively, in units of Mseed). We find that a seed model with $\tilde{M}_{\mathrm{sf,mp}}=5$ and $\tilde{M}_{\mathrm{h}}=3000$ successfully produces a $z$ ∼ 6 quasar with $\sim 10^9\, {\rm M}_{\odot }$ mass and ∼1047 erg s−1 luminosity. BH mergers play a crucial role at $z$ ≳ 9, causing an early boost in BH mass at a time when accretion-driven BH growth is negligible. With more stringent seeding conditions (e.g. $\tilde{M}_{\mathrm{sf,mp}}=1000$), the relative paucity of BH seeds results in a much lower merger rate. In this case, $z$ ≳ 6 quasars can only be formed if we enhance the maximum allowed BH accretion rates (by factors ≳10) compared to the accretion model used in IllustrisTNG. This can be achieved either by allowing for super-Eddington accretion, or by reducing the radiative efficiency. Our results demonstrate that progenitors of $z$ ∼ 6 quasars have distinct BH merger histories for different seeding models, which will be distinguishable with Laser Interferometer Space Antenna observations.

     
    more » « less
  4. ABSTRACT

    Direct collapse black holes (BHs) are promising candidates for producing massive z ≳ 6 quasars, but their formation requires fine-tuned conditions. In this work, we use cosmological zoom simulations to study systematically the impact of requiring: (1) low gas angular momentum (spin), and (2) a minimum incident Lyman–Werner (LW) flux in order to form BH seeds. We probe the formation of seeds (with initial masses of $M_{\rm seed} \sim 10^4\!-\!10^6\, \mathrm{M}_{\odot }\, h^{-1})$ in haloes with a total mass >3000 × Mseed and a dense, metal-poor gas mass >5 × Mseed. Within this framework, we find that the seed-forming haloes have a prior history of star formation and metal enrichment, but they also contain pockets of dense, metal-poor gas. When seeding is further restricted to haloes with low gas spins, the number of seeds formed is suppressed by factors of ∼6 compared to the baseline model, regardless of the seed mass. Seed formation is much more strongly impacted if the dense, metal-poor gas is required to have a critical LW flux (Jcrit). Even for Jcrit values as low as 50J21, no $8\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$ seeds are formed. While lower mass ($1.25\times 10^{4},1\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$) seeds do form, they are strongly suppressed (by factors of ∼10–100) compared to the baseline model at gas mass resolutions of $\sim 10^4~\mathrm{M}_{\odot }\, h^{-1}$ (with even stronger suppression at higher resolutions). As a result, BH merger rates are also similarly suppressed. Since early BH growth is dominated by mergers in our models, none of the seeds are able to grow to the supermassive regime ($\gtrsim 10^6~\mathrm{M}_{\odot }\, h^{-1}$) by z = 7. Our results hint that producing the bulk of the z ≳ 6 supermassive BH population may require alternate seeding scenarios that do not depend on the LW flux, early BH growth dominated by rapid or super-Eddington accretion, or a combination of these possibilities.

     
    more » « less
  5. Abstract

    Helium-rich subdwarf O stars (sdOs) are hot compact stars in a pre-white dwarf evolutionary state. Most of them have effective temperatures and surface gravities in the range Teff = 40 000–50 000 K and log g = 5.5–6.0. Their atmospheres are helium dominated. If present at all, C, N, and O are trace elements. The abundance patterns are explained in terms of nucleosynthesis during single star evolution (late helium core flash) or a binary He-core white dwarf merger. Here we announce the discovery of two hot hydrogen-deficient sdOs (PG1654+322 and PG1528+025) that exhibit unusually strong carbon and oxygen lines. A non-LTE model atmosphere analysis of spectra obtained with the Large Binocular Telescope and by the LAMOST survey reveals astonishingly high abundances of C ($\approx 20{{\ \rm per\ cent}}$) and O ($\approx 20{{\ \rm per\ cent}}$) and that the two stars are located close to the helium main sequence. Both establish a new spectroscopic class of hot H-deficient subdwarfs (CO-sdO) and can be identified as the remnants of a He-core white dwarf that accreted matter of a merging low-mass CO-core white dwarf. We conclude that the CO-sdOs represent an alternative evolutionary channel creating PG1159 stars besides the evolution of single stars that experience a late helium-shell flash.

     
    more » « less