skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Trapped Under Ice: Spatial and Seasonal Dynamics of Dissolved Organic Matter Composition in Tundra Lakes
Abstract

Arctic lakes store, modify, and transport large quantities of carbon from terrestrial environments to the atmosphere; however, the spatial and temporal relationships between quantity and composition of dissolved organic matter (DOM) have not been well characterized across broad arctic regions. Moreover, most arctic lake DOM compositions have been examined during the ice‐free summer, whereas DOM cycling between the ice‐covered winter months and summer have not been addressed. To resolve these spatial and seasonal uncertainties in DOM cycling, we sampled a series of arctic lakes from the North Slope of Alaska across a latitudinal gradient in the winter and summer over 3 years. Samples were analyzed for dissolved organic carbon concentration and DOM composition was characterized using optical and fluorescence properties combined with molecular‐level analysis using Fourier transform‐ion cyclotron resonance mass spectrometry. Tundra lake DOM properties including aromaticity and molecular stoichiometries were similar to other northern high‐latitude lakes, but optical parameters related to aromaticity and molecular weight were greater in major arctic rivers and in coastal lakes in the North Slope region. DOM composition was highly seasonal, with ice exclusion concentrating microbially processed DOM in the winter water columns, potentially influencing DOM cycling the following summer. However, the greatest variations in DOM composition were related to lake depth and likely other physical features including morphology and bathymetry. As the Arctic warms, we expect changes in hydrology and ice cover to enhance under‐ice microbial DOM processing, early summer photodegradation, and ultimately carbon fluxes to the atmosphere after ice‐out.

 
more » « less
PAR ID:
10367721
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
127
Issue:
4
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The standard model for aquatic ecosystems is to link hydrologic connectivity to dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition and, ultimately, reactivity. Studies across effective precipitation gradients have been suggested as models for predicting how carbon cycling will change in Arctic aquatic ecosystems with projected drying (i.e., reduced hydrologic connectivity). To evaluate links between DOM dynamics and hydrologic connectivity, 41 stream samples from Greenland were analyzed across an effective precipitation gradient for DOM optical properties and elemental composition using ultrahigh‐resolution mass spectrometry. Sites with negative effective precipitation and decreased hydrologic connectivity exhibited elevated specific conductivity (SpC) and DOC concentrations as well as DOM composition indicative of decreased hydrologic connectivity, for example, lower aromaticity, assessed using carbon‐specific UV absorbance at 254 nm, decreased relative abundances of polyphenolic and condensed aromatic compounds, and increased relative abundances of highly unsaturated and phenolic compounds. Allochthonous inputs decreased as the summer progressed as exhibited by decreases in aromatic compounds. A decrease in molecular richness and N‐containing compounds coincided with the decrease in allochthonous inputs. DOC concentrations increased over the summer but more slowly than SpC, suggesting degradation processes outweighed combined evapoconcentration and production. The patterns in DOM composition suggest evapoconcentration and photodegradation are dominant controls. However, when hydrologic connectivity was high, regardless of effective precipitation, DOM reflected allochthonous sources such as snowmelt‐fed wetlands. These results highlight the challenges of modeling carbon cycling in aquatic ecosystems across effective precipitation gradients, particularly those with strong seasonality and regional variability in hydrologic inputs.

     
    more » « less
  2. Abstract

    River organic matter transformations impact the cycling of energy, carbon, and nutrients. The delivery of distinct dissolved organic matter (DOM) sources can alter aquatic DOM cycling and associated biogeochemical processes. Yet DOM source and reactivity are not well‐defined for many river systems, including in western Canada. Here, we explore DOM cycling in the mainstem of the Oldman River (stream order 6–7), a heavily regulated river network in southern Alberta (Canada). We compared seasonal river DOM content, composition, and bioavailability with nine endmember leachates from the river valley using optical properties and incubations to estimate biodegradable dissolved organic carbon (BDOC). River DOM composition was most similar to terrestrial soil leachates, followed by autochthonous DOM leachates. River DOM bioavailability was low (BDOC = 0%–16.6%, mean of 7.1%). Endmember leachate bioavailability increased from soils (BDOC = 23.9%–53.7%), to autochthonous sources (fish excretion, macrophytes, biofilm; BDOC = 49.9%–80.0%), to terrestrial vegetation (leaves, shrubs, grass; BDOC >  80%), scaling positively with protein‐like DOM content and amount of leachable dissolved organic carbon (DOC), and negatively with aromaticity. Seasonally, DOC concentrations changed little despite >15‐fold increases in discharge during spring. River DOM composition shifted modestly toward soil‐like endmembers in spring and more bioavailable autochthonous end members in autumn and winter. Low DOM bioavailability in the river mainstem and low DOC yields shown in previous work point to limited internal processing of DOM and limited bioavailable DOM delivery to downstream habitats, possibly due to upstream flow regulation. Our observations provide important insights into the functioning of western Canadian aquatic networks.

     
    more » « less
  3. Abstract

    Northern high‐latitude lakes are undergoing climate‐induced changes including shifts in their hydrologic connectivity with terrestrial ecosystems. How this will impact dissolved organic matter (DOM) biogeochemistry remains uncertain. We examined the drivers of DOM composition for lakes in the Yukon Flats Basin in Alaska, an arid region of low relief that is characteristic of over one‐quarter of circumpolar lake area. Utilizing the vascular plant biomarker lignin, chromophoric dissolved organic matter (CDOM), and ultrahigh‐resolution mass spectrometry, we interpreted DOM compositional changes using lake‐water stable isotope (δ18O‐H2O) composition as a proxy for lake hydrologic connectivity with the landscape. We observed a relative decrease in CDOM in more hydrologically isolated lakes (enriched δ18O‐H2O) without a corresponding decrease in dissolved organic carbon (DOC) concentration. Although DOC and CDOM were weakly correlated, a significant positive relationship between lignin and CDOM (r2= 0.67) demonstrates that optical parameters are useful for estimating lignin concentration and thus vascular plant contribution to lake DOM. Indicators of allochthonous DOM, including lignin carbon normalized yields, CDOM aromaticity proxies, and relative abundances of polyphenolic and condensed aromatic compound classes, were negatively correlated with δ18O‐H2O (r2 > 0.45), suggesting there is little allochthonous DOM supplied to many of these hydrologically isolated lakes. We conclude that decreased lake hydrologic connectivity, driven by ongoing climate change (i.e., decreased precipitation, warming temperatures), will reduce allochthonous DOM contributions and shift lakes toward lower CDOM systems with ecosystem‐scale ramifications for heat transfer, photochemical reactions, productivity, and ultimately their biogeochemical function.

     
    more » « less
  4. Abstract

    Climatic changes are transforming northern high‐latitude watersheds as permafrost thaws and vegetation and hydrology shift. These changes have implications for the source and reactivity of riverine dissolved organic matter (DOM), and thus biogeochemical cycling, across northern high‐latitude systems. In this study, we use a latitudinal gradient from the interior to the North Slope of Alaska to evaluate seasonal and landscape drivers of DOM composition in this changing Arctic environment. To assess DOM source and composition, we used absorbance and fluorescence spectroscopy to measure DOM optical properties, lignin biomarker analyses to evaluate vascular plant contribution to the DOM pool, and Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) to assess DOM compositional changes. We found that seasonal inputs of DOM at elevated discharge during the freshet were typically more aromatic in nature with higher lignin concentrations and carbon‐normalized yields. Landscape characteristics were a major control on dissolved organic carbon (DOC) yields and DOM composition. More northern watersheds, which were steeper, underlain by continuous permafrost, and exhibited a mix of barren and lichen/moss vegetation cover, exported less DOC with relatively more aliphatic DOM compared to more southern basins. Watersheds with deeper active layers exported DOM that was more aromatic with higher polyphenolic and condensed aromatic relative abundances and lignin yields, likely sourced from shallow subsurface flow during high discharge periods. However, contributions from deeper groundwater to streamflow is expected to increase, which would increase interactions of groundwater with mineral soils and decrease aromatic DOM contributions during periods of low discharge.

     
    more » « less
  5. Abstract

    Dissolved organic matter (DOM) is an intermediate between organic carbon formed by primary producers and carbon dioxide (CO2) produced through respiration, making it a key component of the carbon cycle in aquatic ecosystems. Its composition influences the routes of mineralization. Here, we evaluate DOM composition as a function of time and depth in Lake Mendota, a highly productive eutrophic lake that stratifies in warm months and is located in Madison, Wisconsin, USA. Dissolved organic carbon concentrations and optical properties are presented for 73 samples collected at a single location at varying depths within the water column from June to November. A subset of samples is analyzed by Fourier transform‐ion cyclotron resonance mass spectrometry (FT‐ICR MS) to investigate DOM composition at the molecular level. Temporally, increases in more oxidized formulas are observed in both the epilimnion and hypolimnion. At the surface, correlations between DOM formulas and both chlorophyll concentrations and light intensity show that photochemical reactions contribute to DOM oxidation. In the hypolimnion, redox conditions and interactions with sediments likely influence temporal compositional change. Our results show DOM composition varies with depth with more highly oxidized formulas identified deeper in the water column. However, DOM composition varies more temporally than by location within the water column. This work has implications for climate change as DOM photooxidation in lakes represents an understudied flux of CO2to the atmosphere. Additionally, lake eutrophication is increasing due to warming temperatures and this data set yields detailed molecular information about DOM composition and processing in such lakes.

     
    more » « less