skip to main content


Title: Neural Fields in Visual Computing and Beyond
Abstract

Recent advances in machine learning have led to increased interest in solving visual computing problems using methods that employ coordinate‐based neural networks. These methods, which we callneural fields, parameterize physical properties of scenes or objects across space and time. They have seen widespread success in problems such as 3D shape and image synthesis, animation of human bodies, 3D reconstruction, and pose estimation. Rapid progress has led to numerous papers, but a consolidation of the discovered knowledge has not yet emerged. We provide context, mathematical grounding, and a review of over 250 papers in the literature on neural fields. InPart I, we focus on neural field techniques by identifying common components of neural field methods, including different conditioning, representation, forward map, architecture, and manipulation methods. InPart II, we focus on applications of neural fields to different problems in visual computing, and beyond (e.g., robotics, audio). Our review shows the breadth of topics already covered in visual computing, both historically and in current incarnations, and highlights the improved quality, flexibility, and capability brought by neural field methods. Finally, we present a companion website that acts as a living database that can be continually updated by the community.

 
more » « less
NSF-PAR ID:
10367766
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
41
Issue:
2
ISSN:
0167-7055
Page Range / eLocation ID:
p. 641-676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning is an expanding field with an ever-increasing role in everyday life, with its utility in the industrial, agricultural, and medical sectors being undeniable. Recently, this utility has come in the form of machine learning implementation on embedded system devices. While there have been steady advances in the performance, memory, and power consumption of embedded devices, most machine learning algorithms still have a very high power consumption and computational demand, making the implementation of embedded machine learning somewhat difficult. However, different devices can be implemented for different applications based on their overall processing power and performance. This paper presents an overview of several different implementations of machine learning on embedded systems divided by their specific device, application, specific machine learning algorithm, and sensors. We will mainly focus on NVIDIA Jetson and Raspberry Pi devices with a few different less utilized embedded computers, as well as which of these devices were more commonly used for specific applications in different fields. We will also briefly analyze the specific ML models most commonly implemented on the devices and the specific sensors that were used to gather input from the field. All of the papers included in this review were selected using Google Scholar and published papers in the IEEExplore database. The selection criterion for these papers was the usage of embedded computing systems in either a theoretical study or practical implementation of machine learning models. The papers needed to have provided either one or, preferably, all of the following results in their studies—the overall accuracy of the models on the system, the overall power consumption of the embedded machine learning system, and the inference time of their models on the embedded system. Embedded machine learning is experiencing an explosion in both scale and scope, both due to advances in system performance and machine learning models, as well as greater affordability and accessibility of both. Improvements are noted in quality, power usage, and effectiveness. 
    more » « less
  2. null (Ed.)
    In the past few decades, we have witnessed tremendous advancements in biology, life sciences and healthcare. These advancements are due in no small part to the big data made available by various high-throughput technologies, the ever-advancing computing power, and the algorithmic advancements in machine learning. Specifically, big data analytics such as statistical and machine learning has become an essential tool in these rapidly developing fields. As a result, the subject has drawn increased attention and many review papers have been published in just the past few years on the subject. Different from all existing reviews, this work focuses on the application of systems, engineering principles and techniques in addressing some of the common challenges in big data analytics for biological, biomedical and healthcare applications. Specifically, this review focuses on the following three key areas in biological big data analytics where systems engineering principles and techniques have been playing important roles: the principle of parsimony in addressing overfitting, the dynamic analysis of biological data, and the role of domain knowledge in biological data analytics. 
    more » « less
  3. Advances in neural fields are enablling high-fidelity capture of shape and appearance of dynamic 3D scenes. However, this capbabilities lag behind those offered by conventional representations such as 2D videos because of algorithmic challenges and the lack of large-scale multi-view real-world datasets. We address the dataset limitations with DiVa-360, a real-world 360° dynamic visual dataset that contains synchronized high-resolution and long-duration multi-view video sequences of table-scale scenes captured using a customized low-cost system with 53 cameras. It contains 21 object-centric sequences categorized by different motion types, 25 intricate hand-object interaction sequences, and 8 long-duration sequences for a total of 17.4M frames. In addition, we provide foreground-background segmentation masks, synchronized audio, and text descriptions. We benchmark the state-of-the-art dynamic neural field methods on DiVa-360 and provide insights about existing methods and future challenges on long-duration neural field capture. 
    more » « less
  4. Advances in neural fields are enablling high-fidelity capture of shape and appearance of dynamic 3D scenes. However, this capbabilities lag behind those offered by conventional representations such as 2D videos because of algorithmic challenges and the lack of large-scale multi-view real-world datasets. We address the dataset limitations with DiVa-360, a real-world 360° dynamic visual dataset that contains synchronized high-resolution and long-duration multi-view video sequences of table-scale scenes captured using a customized low-cost system with 53 cameras. It contains 21 object-centric sequences categorized by different motion types, 25 intricate hand-object interaction sequences, and 8 long-duration sequences for a total of 17.4M frames. In addition, we provide foreground-background segmentation masks, synchronized audio, and text descriptions. We benchmark the state-of-the-art dynamic neural field methods on DiVa-360 and provide insights about existing methods and future challenges on long-duration neural field capture. 
    more » « less
  5. Full Paper: Digital transformations are reshaping engineering practices with implications for conducting engineering education research. Given the paucity of discussion of digital methods within engineering education research, we believe it is important to examine and present to the community an overview of how digital technology is changing research practices. In this paper we focus on digital ethnography as it has implications for studies of technical education and work, which necessarily involve using, and observing how others employ digital data sources, tools, systems, methods, etc. In this paper we report preliminary results from an in-depth literature search and review. To select the papers for the review, we first examined prior meta-review papers that identified new ethnographic methods appropriate for digital contexts (e.g., network ethnography, trace ethnography, rapid ethnography, connective ethnography, focused ethnography, etc.). We then used these as keywords to search for papers that were representative of these methods and selected the 100 most cited papers from this corpus, with further screening resulting in a final collection of 91 papers. We then conducted free/open coding of the articles followed by thematic coding to identify six categories and dived deeper into one of the categories, focused on different approaches to ethnography, to further explore the various types of ethnographic methods mentioned in the collected literature. We close by discussing how emerging techniques in ethnographic field research can be applied to engineering education research with engineering work practices as an exemplar. 
    more » « less