skip to main content


Title: A multimodal sensor dataset for continuous stress detection of nurses in a hospital
Abstract

Advances in wearable technologies provide the opportunity to monitor many physiological variables continuously. Stress detection has gained increased attention in recent years, mainly because early stress detection can help individuals better manage health to minimize the negative impacts of long-term stress exposure. This paper provides a unique stress detection dataset created in a natural working environment in a hospital. This dataset is a collection of biometric data of nurses during the COVID-19 outbreak. Studying stress in a work environment is complex due to many social, cultural, and psychological factors in dealing with stressful conditions. Therefore, we captured both the physiological data and associated context pertaining to the stress events. We monitored specific physiological variables such as electrodermal activity, Heart Rate, and skin temperature of the nurse subjects. A periodic smartphone-administered survey also captured the contributing factors for the detected stress events. A database containing the signals, stress events, and survey responses is publicly available on Dryad.

 
more » « less
NSF-PAR ID:
10367883
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
9
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We describe a controlled experiment, aiming to study productivity and stress effects of email interruptions and activity interactions in the modern office. The measurement set includes multimodal data forn = 63 knowledge workers who volunteered for this experiment and were randomly assigned into four groups: (G1/G2) Batch email interruptions with/without exogenous stress. (G3/G4) Continual email interruptions with/without exogenous stress. To provide context, the experiment’s email treatments were surrounded by typical office tasks. The captured variables include physiological indicators of stress, measures of report writing quality and keystroke dynamics, as well as psychometric scores and biographic information detailing participants’ profiles. Investigations powered by this dataset are expected to lead to personalized recommendations for handling email interruptions and a deeper understanding of synergistic and antagonistic office activities. Given the centrality of email in the modern office, and the importance of office work to people’s lives and the economy, the present data have a valuable role to play.

     
    more » « less
  2. Abstract

    Objective.Reorienting is central to how humans direct attention to different stimuli in their environment. Previous studies typically employ well-controlled paradigms with limited eye and head movements to study the neural and physiological processes underlying attention reorienting. Here, we aim to better understand the relationship between gaze and attention reorienting using a naturalistic virtual reality (VR)-based target detection paradigm.Approach.Subjects were navigated through a city and instructed to count the number of targets that appeared on the street. Subjects performed the task in a fixed condition with no head movement and in a free condition where head movements were allowed. Electroencephalography (EEG), gaze and pupil data were collected. To investigate how neural and physiological reorienting signals are distributed across different gaze events, we used hierarchical discriminant component analysis (HDCA) to identify EEG and pupil-based discriminating components. Mixed-effects general linear models (GLM) were used to determine the correlation between these discriminating components and the different gaze events time. HDCA was also used to combine EEG, pupil and dwell time signals to classify reorienting events.Main results.In both EEG and pupil, dwell time contributes most significantly to the reorienting signals. However, when dwell times were orthogonalized against other gaze events, the distributions of the reorienting signals were different across the two modalities, with EEG reorienting signals leading that of the pupil reorienting signals. We also found that the hybrid classifier that integrates EEG, pupil and dwell time features detects the reorienting signals in both the fixed (AUC = 0.79) and the free (AUC = 0.77) condition.Significance.We show that the neural and ocular reorienting signals are distributed differently across gaze events when a subject is immersed in VR, but nevertheless can be captured and integrated to classify target vs. distractor objects to which the human subject orients.

     
    more » « less
  3. Abstract

    Many wildlife species are live captured, sampled, and released; for polar bears (Ursus maritimus) capture often requires chemical immobilization via helicopter darting. Polar bears reduce their activity for approximately 4 days after capture, likely reflecting stress recovery. To better understand this stress, we quantified polar bear activity (via collar‐mounted accelerometers) and body temperature (via loggers in the body core [Tabd] and periphery [Tper]) during 2–6 months of natural behavior, and during helicopter recapture and immobilization. Recapture induced bouts of peak activity higher than those that occurred during natural behavior for 2 of 5 bears, greater peak Tperfor 3 of 6 bears, and greater peak Tabdfor 1 of 6 bears. High body temperature (>39.0°C) occurred in Tperfor 3 of 6 individuals during recapture and 6 of 6 individuals during natural behavior, and in Tabdfor 2 of 6 individuals during recapture and 3 of 6 individuals during natural behavior. Measurements of Tabdand Tpercorrelated with rectal temperatures measured after immobilization, supporting the use of rectal temperatures for monitoring bear response to capture. Using a larger dataset (n = 66 captures), modeling of blood biochemistry revealed that maximum ambient temperature during recapture was associated with a stress leukogram (7–26% decline in percent lymphocytes, 12–21% increase in percent neutrophils) and maximum duration of helicopter operations had a similar but smaller effect. We conclude that polar bear activity and body temperature during helicopter capture are similar to that which occurs during the most intense events of natural behavior; high body temperature, especially in warm capture conditions, is a key concern; additional study of stress leukograms in polar bears is needed; and additional data collection regarding capture operations would be useful.

     
    more » « less
  4. Currently, many critical care indices are repetitively assessed and recorded by overburdened nurses, e.g. physical function or facial pain expressions of nonverbal patients. In addition, many essential information on patients and their environment are not captured at all, or are captured in a non-granular manner, e.g. sleep disturbance factors such as bright light, loud background noise, or excessive visitations. In this pilot study, we examined the feasibility of using pervasive sensing technology and artificial intelligence for autonomous and granular monitoring of critically ill patients and their environment in the Intensive Care Unit (ICU). As an exemplar prevalent condition, we also characterized delirious and non-delirious patients and their environment. We used wearable sensors, light and sound sensors, and a high-resolution camera to collected data on patients and their environment. We analyzed collected data using deep learning and statistical analysis. Our system performed face detection, face recognition, facial action unit detection, head pose detection, facial expression recognition, posture recognition, actigraphy analysis, sound pressure and light level detection, and visitation frequency detection. We were able to detect patient's face (Mean average precision (mAP)=0.94), recognize patient's face (mAP=0.80), and their postures (F1=0.94). We also found that all facial expressions, 11 activity features, visitation frequency during the day, visitation frequency during the night, light levels, and sound pressure levels during the night were significantly different between delirious and non-delirious patients (p-value<0.05). In summary, we showed that granular and autonomous monitoring of critically ill patients and their environment is feasible and can be used for characterizing critical care conditions and related environment factors. 
    more » « less
  5. Antona, M ; null (Ed.)
    Studies show that young autistic adults are under- or unemployed, with almost half never holding a paying job in their 20’s. Unemployment within this population leads to decreased personal growth and increased dependence on caregivers. Research suggests that the interview process is one of the largest barriers to employment for this population. Autistic individuals often struggle with emotion regulation, which can be exacerbated by the interview process. To address this, we propose the use of a stress detection model in conjunction with a virtual reality interview simulator. This combination will allow for the interview to adapt to the state of the participant to improve the skills and engagement of the user and positively influence their comfort level. Data regarding negative affective responses to categories of questions can also be used to inform employers on better interviewing techniques. A model was designed using data obtained from neurotypical participants completing a modified Computerized Paced Serial Addition Task (PASAT-C) and evaluated on a dataset obtained from Autistic participants who took part in a simulated interview. Agreement between the model and ground truth was compared based on Pearson correlation coefficients. It was found that was r(289) = 0.28, which was statistically significant (p < .001; CI: 0.17 to 0.38). Our preliminary results provide evidence for the validity of observer-based labeling of data captured using a wrist-worn physiological sensor. 
    more » « less