skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: A Multivariate Approach to Generate Synthetic Short‐To‐Medium Range Hydro‐Meteorological Forecasts Across Locations, Variables, and Lead Times
Abstract

The use of hydro‐meteorological forecasts in water resources management holds great promise as a soft pathway to improve system performance. Methods for generating synthetic forecasts of hydro‐meteorological variables are crucial for robust validation of forecast use, as numerical weather prediction hindcasts are only available for a relatively short period (10–40 years) that is insufficient for assessing risk related to forecast‐informed decision‐making during extreme events. We develop a generalized error model for synthetic forecast generation that is applicable to a range of forecasted variables used in water resources management. The approach samples from the distribution of forecast errors over the available hindcast period and adds them to long records of observed data to generate synthetic forecasts. The approach utilizes the Skew Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that can exhibit heteroskedastic, auto‐correlated, and non‐Gaussian behavior. An empirical copula is used to capture covariance between variables, forecast lead times, and across space. We demonstrate the method for medium‐range forecasts across Northern California in two case studies for (1) streamflow and (2) temperature and precipitation, which are based on hindcasts from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R V2 climate model, respectively. The case studies highlight the flexibility of the model and its ability to emulate space‐time structures in forecasts at scales critical for water resources management. The proposed method is generalizable to other locations and computationally efficient, enabling fast generation of long synthetic forecast ensembles that are appropriate for risk analysis.

 
more » « less
NSF-PAR ID:
10367913
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
6
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The use of hydro-meteorological forecasts in water resources management holds great promise as a soft pathway to improve system performance. Methods for generating synthetic forecasts of hydro-meteorological variables are crucial for robust validation of forecast use, as numerical weather prediction hindcasts are only available for a relatively short period (10–40 years) that is insufficient for assessing risk related to forecast-informed decision-making during extreme events. We develop a generalized error model for synthetic forecast generation that is applicable to a range of forecasted variables used in water resources management. The approach samples from the distribution of forecast errors over the available hindcast period and adds them to long records of observed data to generate synthetic forecasts. The approach utilizes the Skew Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that can exhibit heteroskedastic, auto-correlated, and non-Gaussian behavior. An empirical copula is used to capture covariance between variables, forecast lead times, and across space. We demonstrate the method for medium-range forecasts across Northern California in two case studies for (1) streamflow and (2) temperature and precipitation, which are based on hindcasts from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R V2 climate model, respectively. The case studies highlight the flexibility of the model and its ability to emulate space-time structures in forecasts at scales critical for water resources management. The proposed method is generalizable to other locations and computationally efficient, enabling fast generation of long synthetic forecast ensembles that are appropriate for risk analysis. 
    more » « less
  2. Abstract

    Snowpack provides the majority of predictive information for water supply forecasts (WSFs) in snow-dominated basins across the western United States. Drought conditions typically accompany decreased snowpack and lowered runoff efficiency, negatively impacting WSFs. Here, we investigate the relationship between snow water equivalent (SWE) and April–July streamflow volume (AMJJ-V) during drought in small headwater catchments, using observations from 31 USGS streamflow gauges and 54 SNOTEL stations. A linear regression approach is used to evaluate forecast skill under different historical climatologies used for model fitting, as well as with different forecast dates. Experiments are constructed in which extreme hydrological drought years are withheld from model training, that is, years with AMJJ-V below the 15th percentile. Subsets of the remaining years are used for model fitting to understand how the climatology of different training subsets impacts forecasts of extreme drought years. We generally report overprediction in drought years. However, training the forecast model on drier years, that is, below-median years (P15,P57.5], minimizes residuals by an average of 10% in drought year forecasts, relative to a baseline case, with the highest median skill obtained in mid- to late April for colder regions. We report similar findings using a modified National Resources Conservation Service (NRCS) procedure in nine large Upper Colorado River basin (UCRB) basins, highlighting the importance of the snowpack–streamflow relationship in streamflow predictability. We propose an “adaptive sampling” approach of dynamically selecting training years based on antecedent SWE conditions, showing error reductions of up to 20% in historical drought years relative to the period of record. These alternate training protocols provide opportunities for addressing the challenges of future drought risk to water supply planning.

    Significance Statement

    Seasonal water supply forecasts based on the relationship between peak snowpack and water supply exhibit unique errors in drought years due to low snow and streamflow variability, presenting a major challenge for water supply prediction. Here, we assess the reliability of snow-based streamflow predictability in drought years using a fixed forecast date or fixed model training period. We critically evaluate different training protocols that evaluate predictive performance and identify sources of error during historical drought years. We also propose and test an “adaptive sampling” application that dynamically selects training years based on antecedent SWE conditions providing to overcome persistent errors and provide new insights and strategies for snow-guided forecasts.

     
    more » « less
  3. Abstract Observational evidence shows changes to North American weather regime occurrence depending on the strength of the lower-stratospheric polar vortex. However, it is not yet clear how this occurs or to what extent an improved stratospheric forecast would change regime predictions. Here we analyze four North American regimes at 500 hPa, constructed in principal component (PC) space. We consider both the location of the regimes in PC space and the linear regression between each PC and the lower-stratospheric zonal-mean winds, yielding a theory of which regime transitions are likely to occur due to changes in the lower stratosphere. Using a set of OpenIFS simulations, we then test the effect of relaxing the polar stratosphere to ERA-Interim on subseasonal regime predictions. The model start dates are selected based on particularly poor subseasonal regime predictions in the European Centre for Medium-Range Weather Forecasts CY43R3 hindcasts. While the results show only a modest improvement to the number of accurate regime predictions, there is a substantial reduction in Euclidean distance error in PC space. The average movement of the forecasts within PC space is found to be consistent with expectation for moderate-to-large lower-stratospheric zonal wind perturbations. Overall, our results provide a framework for interpreting the stratospheric influence on North American regime behavior. The results can be applied to subseasonal forecasts to understand how stratospheric uncertainty may affect regime predictions, and to diagnose which regime forecast errors are likely to be related to stratospheric errors. Significance Statement Predicting the weather several weeks ahead is a major challenge with large potential benefits to society. The strength of the circulation more than 10 km above the Arctic during winter (i.e., the polar vortex) is one source of predictability. This study investigates how forecast error and uncertainty in the polar vortex can impact predictions of large-scale weather patterns called “regimes” over North America. Through statistical analysis of observations and experiments with a weather forecast model, we develop an understanding of which regime changes are more likely to be due to changes in the polar vortex. The results will help forecasters and researchers understand the contribution of the stratosphere to changes in weather patterns, and in assessing and improving weather forecast models. 
    more » « less
  4. Abstract

    Near‐term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water quality. Importantly, ecological forecasts can identify where there is uncertainty in the forecasting system, which is necessary to improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance introduced by different sources, including specification of the model structure, errors in driver data, and estimation of current states (initial conditions). Uncertainty partitioning could be particularly useful in improving forecasts of highly variable cyanobacterial densities, which are difficult to predict and present a persistent challenge for lake managers. As cyanobacteria can produce toxic and unsightly surface scums, advance warning when cyanobacterial densities are increasing could help managers mitigate water quality issues. Here, we fit 13 Bayesian state‐space models to evaluate different hypotheses about cyanobacterial densities in a low nutrient lake that experiences sporadic surface scums of the toxin‐producing cyanobacterium,Gloeotrichia echinulata. We used data from several summers of weekly cyanobacteria samples to identify dominant sources of uncertainty for near‐term (1‐ to 4‐week) forecasts ofG. echinulatadensities. Water temperature was an important predictor of cyanobacterial densities during model fitting and at the 4‐week forecast horizon. However, no physical covariates improved model performance over a simple model including the previous week's densities in 1‐week‐ahead forecasts. Even the best fit models exhibited large variance in forecasted cyanobacterial densities and did not capture rare peak occurrences, indicating that significant explanatory variables when fitting models to historical data are not always effective for forecasting. Uncertainty partitioning revealed that model process specification and initial conditions dominated forecast uncertainty. These findings indicate that long‐term studies of different cyanobacterial life stages and movement in the water column as well as measurements of drivers relevant to different life stages could improve model process representation of cyanobacteria abundance. In addition, improved observation protocols could better define initial conditions and reduce spatial misalignment of environmental data and cyanobacteria observations. Our results emphasize the importance of ecological forecasting principles and uncertainty partitioning to refine and understand predictive capacity across ecosystems.

     
    more » « less
  5. Forecasts of heavy precipitation delivered by atmospheric rivers (ARs) are becoming increasingly important for both flood control and water supply management in reservoirs across California. This study examines the hypothesis that medium-range forecasts of heavy precipitation at the basin scale exhibit recurrent spatial biases that are driven by mesoscale and synoptic-scale features of associated AR events. This hypothesis is tested for heavy precipitation events in the Sacramento River basin using 36 years of NCEP medium-range reforecasts from 1984 to 2019. For each event we cluster precipitation forecast error across western North America for lead times ranging from 1 to 15 days. Integrated vapor transport (IVT), 500-hPa geopotential heights, and landfall characteristics of ARs are composited across clusters and lead times to diagnose the causes of precipitation forecast biases. We investigate the temporal evolution of forecast error to characterize its persistence across lead times, and explore the accuracy of forecasted IVT anomalies across different domains of the North American west coast during heavy precipitation events in the Sacramento basin. Our results identify recurrent spatial patterns of precipitation forecast error consistent with errors of forecasted synoptic-scale features, especially at long (5–15 days) leads. Moreover, we find evidence that forecasts of AR landfalls well outside of the latitudinal bounds of the Sacramento basin precede heavy precipitation events within the basin. These results suggest the potential for using medium-range forecasts of large-scale climate features across the Pacific–North American sector, rather than just local forecasts of basin-scale precipitation, when designing forecast-informed reservoir operations. 
    more » « less