Imaging the spatial distribution and variability of the physical properties controlling subsurface fluid flow remains a fundamental geophysical challenge. Oscillatory hydraulic tomography is a minimally invasive hydraulic testing approach to image these hydraulic properties; however, the resolution and uncertainty associated with this tomographic method remains an open question. Using linearized and non-linear approaches, we show that multi-frequency oscillatory hydraulic tomography provides additional information content that improves imaging resolution and reduces estimated parameter uncertainty.
more »
« less
Aquifer Characterization and Uncertainty in Multi‐Frequency Oscillatory Flow Tests: Approach and Insights
Abstract Characterizing aquifer properties and their associated uncertainty remains a fundamental challenge in hydrogeology. Recent studies demonstrate the use of oscillatory flow interference testing to characterize effective aquifer flow properties. These characterization efforts relate the relative amplitude and phase of an observation signal with a single frequency component to aquifer diffusivity and transmissivity. Here, we present a generalized workflow that relates extracted Fourier coefficients for observation signals with single and multiple frequency components to aquifer flow properties and their associated uncertainty. Through synthetic analytical modeling we show that multi‐frequency oscillatory flow interference testing adds information that improves inversion performance and decreases parameter uncertainty. We show increased observation signal length, sampling frequency, and pressure sensor accuracy all produce decreased parameter uncertainty. This work represents the first attempt we are aware of to quantify effective aquifer parameters and their associated uncertainty using multi‐frequency oscillatory flow interference testing.
more »
« less
- Award ID(s):
- 1654649
- PAR ID:
- 10367914
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Groundwater
- Volume:
- 60
- Issue:
- 2
- ISSN:
- 0017-467X
- Format(s):
- Medium: X Size: p. 180-191
- Size(s):
- p. 180-191
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fractured sedimentary bedrock aquifers represent complex flow systems that may contain fast, fracture‐dominated flow paths and slower, porous media‐dominated flow paths. Thus, characterizing the dynamics of flow and transport through these aquifers remains a fundamental hydrogeologic challenge. Recent studies have demonstrated the utility of a novel hydraulic testing approach, oscillatory flow testing, in field settings to characterize single bedrock fractures embedded in low‐porosity sedimentary bedrock. These studies employed an idealized analytical model assuming Darcian flow through a nondeforming, constant‐aperture, nonleaky fracture for data interpretation, and reported period‐dependent effective fracture flow parameters. Here, we present the application of oscillatory flow testing across a range of frequencies and inter‐well spacings on a fracture embedded in poorly cemented sedimentary bedrock with considerable primary porosity at the Field Site for Research in Fractured Sedimentary Rock. Consistent with previous studies, we show an apparent period‐dependence in returned flow parameters, with hydraulic diffusivity decreasing and storativity increasing with increasing oscillation period, when assuming an idealized fracture conceptual model. We present simple analyses that examine non‐Darcian flow and borehole storage effects as potential test design artifacts and a simple analytical model that examines fluid leakage to the surrounding host rock as a potential hydraulic mechanism that might contribute to the period‐dependent flow parameters. These analyses represent a range of conceptual assumptions about fracture behavior during hydraulic testing, none of which account for the measured responses during oscillatory flow testing, leading us to argue that other hydraulic processes (e.g., aperture heterogeneity and/or fracture hydromechanics) are necessary to accurately represent pressure propagation through fractured sedimentary bedrock.more » « less
-
Abstract The human brain microvasculature is constantly exposed to variable fluid flow regimes and their influence on the endothelium depends in part on the synchronous cooperative behavior between cell–cell junctions and the cytoskeleton. In this study, we exposed human cerebral microvascular endothelial cells to a low laminar flow (1 dyne⋅cm−2), high laminar flow (10 dyne⋅cm−2), low oscillatory flow (±1 dyne⋅cm−2), or high oscillatory flow (±10 dyne⋅cm−2) for 24 hr. After this time, endothelial cell–cell junction and cytoskeletal structural response was characterized through observation of zonula occludens‐1 (ZO‐1), claudin‐5, junctional adhesion molecule‐A (JAM‐A), vascular endothelial cadherin (VE‐Cad), and F‐actin. In addition, we also characterized cell morphology through measurement of cell area and cell eccentricity. Our results revealed the greatest change in junctional structure reorganization for ZO‐1 and JAM‐A to be observed under low laminar flow conditions while claudin‐5 exhibited the greatest change in structural reorganization under both low and high laminar flow conditions. However, VE‐Cad displayed the greatest structural response under a high laminar flow, reflecting the unique responses each cell–cell junction protein had to each fluid flow regime. In addition, cell area and cell eccentricity displayed most significant changes under the high laminar flow and low oscillatory flow, respectively. We believe this study will be useful to the field of cell mechanics and mechanobiology.more » « less
-
We explore the statistical radio frequency interference (RFI) mitigation technique spectral kurtosis (SK) in the context of simulated realistic RFI signals. SK is a per-channel RFI detection metric that estimates the kurtosis of a collection of M power values in a single channel to discern between human-made RFI and incoherent astronomical signals of interest. We briefly test the ability of SK to flag signals with various representative modulation types, data rates, and duty cycles, as well as accumulation lengths M and multi-scale SK bin shapes. Multi-scale SK uses a rolling window to combine information from adjacent time-frequency pixels to mitigate weaknesses in single-scale SK. High data rate RFI signals with significant sidelobe emission are harder to flag, as well as signals with a 50% effective duty cycle. Multi-scale SK using at least one extra channel can detect both the center channel and side-band interference, flagging most of the signal at the expense of larger false positive rates.more » « less
-
The interaction between deformable surfaces and oscillatory driving is known to produce complex secondary time-averaged flows due to inertial and elastic nonlinearities. Here, we revisit the problem of oscillatory flow in a cylindrical tube with a deformable wall, and analyse it under a long-wave theory for small deformations, but for arbitrary Womersley numbers. We find that the oscillatory pressure does not vary linearly along the length of a deformable channel, but instead decays exponentially with spatial oscillations. We show that this decay occurs over an elasto-visco-inertial length scale that depends on the material properties of the fluid and the elastic walls, the geometry of the system, and the frequency of the oscillatory flow, but is independent of the amplitude of deformation. Inertial and geometric nonlinearities associated with the elastic deformation of the channel drive a time-averaged secondary flow. We quantify the flow using numerical solutions of the perturbation theory, and gain insight by developing analytic approximations. The theory identifies a complex non-monotonic dependence of the time-averaged flux on the elastic compliance and inertia, including a reversal of the flow. Finally, we show that our analytic theory is in excellent quantitative agreement with the three-dimensional direct numerical simulations of Pandeet al.(Phys. Rev. Fluids, vol. 8, no. 12, 2023, 124102).more » « less
An official website of the United States government
