We report commissioning observations of the Si
The infrared solar spectrum contains a wealth of physical data about the Sun and is being explored using modern detectors and technology with new ground-based solar telescopes. One such instrument will be the ground-based Cryogenic Near-IR Spectro-Polarimeter of the Daniel K. Inouye Solar Telescope (DKIST), which will be capable of sensitive imaging of the faint infrared solar coronal spectra with full Stokes I, Q, U, and V polarization states. Highly ionized magnetic dipole emission lines have been observed in galaxies and the solar corona. Quantifying the accuracy of spectral inversion procedures requires a precise spectroscopic calibration of observations. A careful interpretation of the spectra around prominent magnetic dipole lines is essential for deriving physical parameters and particularly for quantifying the off-limb solar coronal observations from DKIST. In this work, we aim to provide an analysis of the spectral regions around the infrared coronal emission lines of Fe
- NSF-PAR ID:
- 10367929
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 932
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 22
- Size(s):
- Article No. 22
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x 1430 nm solar coronal line observed coronagraphically with the Cryogenic Near-Infrared Spectropolarimeter at the National Science Foundation’s Daniel K. Inouye Solar Telescope. These are the first known spatially resolved observations of this spectral line, which has strong potential as a coronal magnetic field diagnostic. The observations target a complex active region located on the solar northeast limb on 2022 March 4. We present a first analysis of these data that extracts the spectral line properties through a careful treatment of the variable atmospheric transmission that is known to impact this spectral window. Rastered images are created and compared with extreme-UV observations from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) instrument. A method for estimating the electron density from the Six observations is then demonstrated that makes use of the forbidden line density-sensitive emissivity and an emission-measure analysis of the SDO/AIA bandpass observations. In addition, we derive an effective temperature and nonthermal line width across the region. This study informs the calibration approaches required for more routine observations of this promising diagnostic line. -
Abstract The spectroscopic observations presented here were acquired during the 2017 August 21 total solar eclipse (TSE) with a three-channel partially multiplexed imaging spectrometer operating at extremely high orders (>50). The 4
R ⊙extent of the slit in the north–south direction scanned the corona starting from the central meridian out to approximately 1.0R ⊙off the east limb throughout totality. The line widths and Doppler shifts of the Fex (637.4 nm) and Fexiv (530.3 nm) emission lines, characteristic of 1.1 × 106K and 1.8 × 106K electron temperatures, respectively, varied across the different coronal structures intercepted by the slit. Fexiv was the dominant emission in the closed fields of an active region and the base of a streamer, with relatively constant 20–30 km s−1line widths independent of the height. In contrast, Fex emission exhibited broader (>40 km s−1) line widths in open fields, which increased with height, in particular in the polar coronal hole. Inferences of line widths and Doppler shifts were consistent with extreme ultraviolet (EUV) observations from the Hinode/EUV Imaging Spectrograph, as well as with the near-infrared Fexiii 1074 nm line observed by Coronal Multichannel Polarimeter. The differences in the spectral line widths between distinct coronal structures are interpreted as an indication of the predominance of wave heating in open structures versus localized heating in closed structures. This study underscores the unparalleled advantages and the enormous potential of TSE spectroscopy in measuring line widths simultaneously in open and closed fields at high altitudes, with minimal exposure times, stray light levels, and instrumental widths. -
Abstract On 2017 August 21, the Airborne Infrared Spectrometer (AIR-Spec) observed the total solar eclipse at an altitude of 14 km from aboard the NSF/NCAR Gulfstream V research aircraft. The instrument successfully observed the five coronal emission lines that it was designed to measure: Si
x 1.431μ m, Sxi 1.921μ m, Feix 2.853μ m, Mgviii 3.028μ m, and Siix 3.935μ m. Characterizing these magnetically sensitive emission lines is an important first step in designing future instruments to monitor the coronal magnetic field, which drives space weather events, as well as coronal heating, structure, and dynamics. The AIR-Spec instrument includes an image stabilization system, feed telescope, grating spectrometer, and slit-jaw imager. This paper details the instrument design, optical alignment method, image processing, and data calibration approach. The eclipse observations are described and the available data are summarized. -
Abstract The Airborne Infrared Spectrometer (AIR-Spec) was commissioned during the 2017 total solar eclipse, when it observed five infrared coronal emission lines from a Gulfstream V research jet owned by the National Science Foundation and operated by the National Center for Atmospheric Research. The second AIR-Spec research flight took place during the 2019 July 2 total solar eclipse across the south Pacific. The 2019 eclipse flight resulted in seven minutes of observations, during which the instrument measured all four of its target emission lines: S
xi 1.393μ m, Six 1.431μ m, Sxi 1.921μ m, and Feix 2.853μ m. The 1.393μ m Sxi line was detected for the first time, and probable first detections were made of Sixi 1.934μ m and Fex 1.947μ m. The 2017 AIR-Spec detection of Feix was confirmed and the first observations were made of the Feix line intensity as a function of solar radius. Telluric absorption features were used to calibrate the wavelength mapping, instrumental broadening, and throughput of the instrument. AIR-Spec underwent significant upgrades in preparation for the 2019 eclipse observation. The thermal background was reduced by a factor of 30, providing a 5.5× improvement in signal-to-noise ratio, and the postprocessed pointing stability was improved by a factor of 5 to <10″ rms. In addition, two imaging artifacts were identified and resolved, improving the spectral resolution and making the 2019 data easier to interpret. -
Abstract Differential emission measure (DEM) inversion methods use the brightness of a set of emission lines to infer the line-of-sight (LOS) distribution of the electron temperature (
T e ) in the corona. DEM inversions have been traditionally performed with collisionally excited lines at wavelengths in the extreme ultraviolet and X-ray. However, such emission is difficult to observe beyond the inner corona (1.5R ⊙), particularly in coronal holes. Given the importance of theT e distribution in the corona for exploring the viability of different heating processes, we introduce an analog of the DEM specifically for radiatively excited coronal emission lines, such as those observed during total solar eclipses (TSEs) and with coronagraphs. This radiative-DEM (R-DEM) inversion utilizes visible and infrared emission lines that are excited by photospheric radiation out to at least 3R ⊙. Specifically, we use the Fex (637 nm), Fexi (789 nm), and Fexiv (530 nm) coronal emission lines observed during the 2019 July 2 TSE near solar minimum. We find that, despite a largeT e spread in the inner corona, the distribution converges to an almost isothermal yet bimodal distribution beyond 1.4R ⊙, withT e ranging from 1.1 to 1.4 in coronal holes and from 1.4 to 1.65 MK in quiescent streamers. Application of the R-DEM inversion to the Predictive Science Inc. magnetohydrodynamic simulation for the 2019 eclipse validates the R-DEM method and yields a similar LOSTe distribution to the eclipse data.