skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant responses to multifactorial stress combination
Summary Human activity is causing a global change in plant environment that includes a significant increase in the number and intensity of different stress factors. These include combinations of multiple abiotic and biotic stressors that simultaneously or sequentially impact plants and microbiomes, causing a significant decrease in plant growth, yield and overall health. It was recently found that with the increasing number and complexity of stressors simultaneously impacting a plant, plant growth and survival decline dramatically, even if the level of each individual stress, involved in such ‘multifactorial stress combination’, is low enough not to have a significant effect. Here we highlight this new concept of multifactorial stress combination and discuss its importance for our efforts to develop climate change‐resilient crops.  more » « less
Award ID(s):
1932639
PAR ID:
10367954
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
234
Issue:
4
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1161-1167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted withArabidopsis thalianaseedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC. 
    more » « less
  2. Abstract The complexity of environmental factors affecting crops in the field is gradually increasing due to climate change-associated weather events, such as droughts or floods combined with heat waves, coupled with the accumulation of different environmental and agricultural pollutants. The impact of multiple stress conditions on plants was recently termed “multifactorial stress combination” (MFSC) and defined as the occurrence of 3 or more stressors that impact plants simultaneously or sequentially. We recently reported that with the increased number and complexity of different MFSC stressors, the growth and survival of Arabidopsis (Arabidopsis thaliana) seedlings declines, even if the level of each individual stress is low enough to have no significant effect on plants. However, whether MFSC would impact commercial crop cultivars is largely unknown. Here, we reveal that a MFSC of 5 different low-level abiotic stresses (salinity, heat, the herbicide paraquat, phosphorus deficiency, and the heavy metal cadmium), applied in an increasing level of complexity, has a significant negative impact on the growth and biomass of a commercial rice (Oryza sativa) cultivar and a maize (Zea mays) hybrid. Proteomics, element content, and mixOmics analyses of MFSC in rice identified proteins that correlate with the impact of MFSC on rice seedlings, and analysis of 42 different rice genotypes subjected to MFSC revealed substantial genetic variability in responses to this unique state of stress combination. Taken together, our findings reveal that the impacts of MFSC on 2 different crop species are severe and that MFSC may substantially affect agricultural productivity. 
    more » « less
  3. SUMMARY Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, “multifactorial stress combination” (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic‐phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant. 
    more » « less
  4. Summary Plant–herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long‐standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta‐analyses, we find that elevated temperatures, CO2concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2and drought stress increase foliar herbivory. Our meta‐analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2, temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant–herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species. 
    more » « less
  5. Abstract Climate change is predicted to increase the frequency and intensity of abiotic stress combinations that negatively impact plants and pose a serious threat to crop yield and food supply. Plants respond to episodes of stress combination by activating specific physiological and molecular responses, as well as by adjusting different metabolic pathways, to mitigate the negative effects of the stress combination on plant growth, development, and reproduction. Plants synthesize a wide range of metabolites that regulate many aspects of plant growth and development, as well as plant responses to stress. Although metabolic responses to individual abiotic stresses have been studied extensively in different plant species, recent efforts have been directed at understanding metabolic responses that occur when different abiotic factors are combined. In this review we examine recent studies of metabolomic changes under stress combination in different plants and suggest new avenues for the development of stress combination-resilient crops based on metabolites as breeding targets. 
    more » « less