Abstract Cities across the globe are striving to produce viable solutions to pressing urban sustainability and resilience problems. Despite aspirations, municipal governments often need additional support in terms of knowledge, capacity, or resources to achieve transformations. Partnerships between cities and universities are one mechanism for co-producing knowledge and achieving sustained progress on complex challenges. When properly structured and effectively managed, city-university partnerships (CUPs) are purported to increase transformative capacity in city administrations and support actions which accelerate urban transformations; but these outcomes are not always achieved. As CUPs grow in numbers, there is a pressing need to identify which principles and practices facilitate transformation. Therefore, we used iterative reflective focus group sessions to develop in-depth case studies of five sustainability and resilience CUPs across three countries. The CUPs were cross-compared to explore the partnership dynamics and management practices that aid progress towards transformative goals. Observations were then related to transformative capacity typologies, and mapped to the newly described project-partnership cycle – which is useful for the management of transformative partnerships.
more »
« less
Co-production of knowledge and strategies to support climate resilient fisheries
Abstract Knowledge co-production offers a promising approach to design effective and equitable pathways to reach development goals. Fisheries Strategies for Changing Oceans and Resilient Ecosystems by 2030 (FishSCORE), a United Nations Ocean Decade programme, will co-produce knowledge that advances solutions for climate resilient fisheries through networks and partnerships that include scientists, stakeholders, practitioners, managers, and policy experts. FishSCORE will establish (1) a global network that will develop broadly relevant information and tools to assess and operationalize climate resilience in marine fisheries and (2) local and regional partnerships that will apply those tools to identify and forward context-specific resilience strategies. FishSCORE's activities will be guided by a set of core principles that include commitments to inclusivity, equity, co-leadership, co-ownership, and reciprocity. FishSCORE will focus on identifying solutions for climate resilient fisheries, and it will also advance goals associated with capacity, power, and agency that will support iterative, pluralistic approaches to decision-making in fisheries experiencing ongoing climate-driven changes. This process of co-producing knowledge and strategies requires considerable investments of time from all partners, which is well aligned with the Ocean Decade. However, secure funding must be prioritized to support and implement co-production activities over this long time horizon.
more »
« less
- Award ID(s):
- 1826668
- PAR ID:
- 10367980
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- ICES Journal of Marine Science
- Volume:
- 80
- Issue:
- 2
- ISSN:
- 1054-3139
- Format(s):
- Medium: X Size: p. 358-361
- Size(s):
- p. 358-361
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Both the ecological and social dimensions of fisheries are being affected by climate change. As a result, policymakers, managers, scientists and fishing communities are seeking guidance on how to holistically build resilience to climate change. Numerous studies have highlighted key attributes of resilience in fisheries, yet concrete examples that explicitly link these attributes to social‐ecological outcomes are lacking. To better understand climate resilience, we assembled 18 case studies spanning ecological, socio‐economic, governance and geographic contexts. Using a novel framework for evaluating 38 resilience attributes, the case studies were systematically assessed to understand how attributes enable or inhibit resilience to a given climate stressor. We found population abundance, learning capacity, and responsive governance were the most important attributes for conferring resilience, with ecosystem connectivity, place attachment, and accountable governance scoring the strongest across the climate‐resilient fisheries. We used these responses to develop an attribute typology that describes robust sources of resilience, actionable priority attributes and attributes that are case specific or require research. We identified five fishery archetypes to guide stakeholders as they set long‐term goals and prioritize actions to improve resilience. Lastly, we found evidence for two pathways to resilience: (1) building ecological assets and strengthening communities, which we observed in rural and small‐scale fisheries, and (2) building economic assets and improving effective governance, which was demonstrated in urban and wealthy fisheries. Our synthesis presents a novel framework that can be directly applied to identify approaches, pathways and actionable levers for improving climate resilience in fishery systems.more » « less
-
The unique ecosystems and biodiversity associated with mid-ocean ridge (MOR) hydrothermal vent systems contrast sharply with surrounding deep-sea habitats, however both may be increasingly threatened by anthropogenic activity (e.g., mining activities at massive sulphide deposits). Climate change can alter the deep-sea through increased bottom temperatures, loss of oxygen, and modifications to deep water circulation. Despite the potential of these profound impacts, the mechanisms enabling these systems and their ecosystems to persist, function and respond to oceanic, crustal, and anthropogenic forces remain poorly understood. This is due primarily to technological challenges and difficulties in accessing, observing and monitoring the deep-sea. In this context, the development of deep-sea observatories in the 2000s focused on understanding the coupling between sub-surface flow and oceanic and crustal conditions, and how they influence biological processes. Deep-sea observatories provide long-term, multidisciplinary time-series data comprising repeated observations and sampling at temporal resolutions from seconds to decades, through a combination of cabled, wireless, remotely controlled, and autonomous measurement systems. The three existing vent observatories are located on the Juan de Fuca and Mid-Atlantic Ridges (Ocean Observing Initiative, Ocean Networks Canada and the European Multidisciplinary Seafloor and water column Observatory). These observatories promote stewardship by defining effective environmental monitoring including characterizing biological and environmental baseline states, discriminating changes from natural variations versus those from anthropogenic activities, and assessing degradation, resilience and recovery after disturbance. This highlights the potential of observatories as valuable tools for environmental impact assessment (EIA) in the context of climate change and other anthropogenic activities, primarily ocean mining. This paper provides a synthesis on scientific advancements enabled by the three observatories this last decade, and recommendations to support future studies through international collaboration and coordination. The proposed recommendations include: i) establishing common global scientific questions and identification of Essential Ocean Variables (EOVs) specific to MORs, ii) guidance towards the effective use of observatories to support and inform policies that can impact society, iii) strategies for observatory infrastructure development that will help standardize sensors, data formats and capabilities, and iv) future technology needs and common sampling approaches to answer today’s most urgent and timely questions.more » « less
-
“The science we need for the ocean we want” (IOC, 2020) may be more science than we can afford unless we devise additional cost-effective ways to produce it. Much of the science we need may require local knowledge and skills that are difficult to generate at scale. Global problems, such as ocean acidification, may be lessened by using site-specific solutions that require knowledge of local oceanography. Similarly, implementing solutions to local problems, such as pollution and fisheries sustainability, will require local knowledge and skills that cannot immediately be drawn from global capacity. Supplying the know-how for inexpensive staff and scientific gear to achieve these solutions may be part of capacity building and sharing in the UN Ocean Decade.more » « less
-
Blasiak, Robert (Ed.)Abstract Marine Life 2030 is a programme endorsed by the United Nations Decade of Ocean Science for Sustainable Development (the Ocean Decade) to establish a globally coordinated system that delivers knowledge of ocean life to those who need it, promoting human well-being, sustainable development, and ocean conservation. It is an open network to unite existing and new programmes into a co-designed, global framework to share information on methods, standards, observations, and applications. Goals include realizing interoperable information and transforming the observation and forecasting of marine life for the benefit of all people. Co-design, sharing local capacity, and coordination between users of ocean resources across regions is fundamental to enable sustainable use and conservation. A novel, bottom-up networking structure is now engaging members of the ocean community to address local issues, with Marine Life 2030 facilitating the linkage between groups across different regions to meet the challenges of the Ocean Decade. A variety of metrics, including those proposed by the Group on Earth Observations, will be used to track the success of the co-design process.more » « less
An official website of the United States government
