skip to main content


Title: The spectroscopy and H -band imaging of Virgo cluster galaxies (SHIVir) survey: data catalogue and kinematic profiles
ABSTRACT

The ‘Spectroscopy and H-band Imaging of Virgo cluster galaxies’ (SHIVir) survey is an optical and near-infrared survey which combines SDSS photometry, deep H-band photometry, and long-slit optical spectroscopy for 190 Virgo cluster galaxies covering all morphological types over the stellar mass range log (M*/M⊙) = 7.8–11.5. We present the spectroscopic sample selection, data reduction, and analysis for this SHIVir sample. We have used and optimized the pPXF routine to extract stellar kinematics from our data. Ultimately, resolved kinematic profiles (rotation curves and velocity dispersion profiles) are available for 133 SHIVir galaxies. A comprehensive data base of photometric and kinematic parameters for the SHIVir sample is presented with grizH magnitudes, effective surface brightnesses, effective and isophotal radii, rotational velocities, velocity dispersions, and stellar and dynamical masses. Parameter distributions highlight some bimodal distributions and possible sample biases. A qualitative study of resolved extended velocity dispersion profiles suggests a link between the so-called ‘sigma-drop’ kinematic profile and the presence of rings in lenticular S0 galaxies. Rising dispersion profiles are linked to early-type spirals or dwarf ellipticals for which a rotational component is significant, whereas peaked profiles are tied to featureless giant ellipticals.

 
more » « less
NSF-PAR ID:
10367987
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2356-2375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The M BH – σ ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the M BH – σ ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses ( M BH ) were derived from the broad-line-based relations for H α , H β , and Pa β emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion ( σ ⋆ ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The H α -based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log M BH  ≤ 7.75 M ⊙ and the σ ⋆CaT estimates range between 73 ≤  σ ⋆CaT  ≤ 227 km s −1 . From the so-constructed M BH  −  σ ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the M BH – σ ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion. 
    more » « less
  2. ABSTRACT

    We present SAMI-H i, a survey of the atomic hydrogen content of 296 galaxies with integral field spectroscopy available from the SAMI Galaxy Survey. The sample spans nearly 4 dex in stellar mass ($M_\star = 10^{7.4}-10^{11.1}~ \rm M_\odot$), redshift z < 0.06, and includes new Arecibo observations of 153 galaxies, for which we release catalogues and H i spectra. We use these data to compare the rotational velocities obtained from optical and radio observations and to show how systematic differences affect the slope and scatter of the stellar-mass and baryonic Tully–Fisher relations. Specifically, we show that $\rm H\alpha$ rotational velocities measured in the inner parts of galaxies (1.3 effective radii in this work) systematically underestimate H i global measurements, with H i/$\rm H\alpha$ velocity ratios that increase at low stellar masses, where rotation curves are typically still rising and $\rm H\alpha$ measurements do not reach their plateau. As a result, the $\rm H\alpha$ stellar mass Tully–Fisher relation is steeper (when M⋆ is the independent variable) and has larger scatter than its H i counterpart. Interestingly, we confirm the presence of a small fraction of low-mass outliers of the $\rm H\alpha$ relation that are not present when H i velocity widths are used and are not explained by ‘aperture effects’. These appear to be highly disturbed systems for which $\rm H\alpha$ widths do not provide a reliable estimate of the rotational velocity. Our analysis reaffirms the importance of taking into account differences in velocity definitions as well as tracers used when interpreting offsets from the Tully–Fisher relation, at both low and high redshifts and when comparing with simulations.

     
    more » « less
  3. The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band H α + [NII] imaging survey of the Virgo cluster carried out with MegaCam at the Canada-French-Hawaii telescope. We use a new set of data extracted from VESTIGE to study the impact of the hostile cluster environment on the star formation process down to the scale of HII regions (∼50 pc). Here, HII regions are identified and their parameters measured using the HII PHOT code on a sample of 114 late-type galaxies spanning a wide range in morphological type (Sa-Sd, Im, BCD), stellar mass (10 6.5  ≤  M star  ≤ 10 11 M ⊙ ), and star formation activity (10 −3  ≤ SFR ≤ 10 M ⊙ yr −1 ). Owing to the exquisite average resolution of the VESTIGE data (0.65 arcsec), we detect 11302 HII regions with an H α luminosity L (H α ) ≥ 10 37 erg s −1 . We show that the typical number of HII regions in gas-stripped objects is significantly lower than in healthy late-types of similar stellar mass. We also show that in these gas-stripped galaxies the number of HII regions significantly drops outside the effective radius, suggesting that the quenching process occurs outside-in, in agreement with other multifrequency observations. These new results consistently confirm that the main mechanism responsible for the decrease of the star formation activity observed in cluster galaxies is ram pressure, allowing us to discard other milder processes such as starvation or strangulation, which are unable to reproduce the observed radially truncated profiles. 
    more » « less
  4. Abstract This is the third paper of a series where we study the stellar population gradients (SP; ages, metallicities, α-element abundance ratios and stellar initial mass functions) of early type galaxies (ETGs) at z ≤ 0.08 from the MaNGA-DR15 survey. In this work we focus on the S0 population and quantify how the SP varies across the population as well as with galactocentric distance. We do this by measuring Lick indices and comparing them to stellar population synthesis models. This requires spectra with high signal-to-noise which we achieve by stacking in bins of luminosity (Lr) and central velocity dispersion (σ0). We find that: 1) There is a bimodality in the S0 population: S0s more massive than 3 × 1010M⊙ show stronger velocity dispersion and age gradients (age and σr decrease outwards) but little or no metallicity gradient, while the less massive ones present relatively flat age and velocity dispersion profiles, but a significant metallicity gradient (i.e. [M/H] decreases outwards). Above 2 × 1011M⊙ the number of S0s drops sharply. These two mass scales are also where global scaling relations of ETGs change slope. 2) S0s have steeper velocity dispersion profiles than fast rotating elliptical galaxies (E-FRs) of the same luminosity and velocity dispersion. The kinematic profiles and stellar population gradients of E-FRs are both more similar to those of slow rotating ellipticals (E-SRs) than to S0s, suggesting that E-FRs are not simply S0s viewed face-on. 3) At fixed σ0, more luminous S0s and E-FRs are younger, more metal rich and less α-enhanced. Evidently for these galaxies, the usual statement that ‘massive galaxies are older’ is not true if σ0 is held fixed. 
    more » « less
  5. ABSTRACT

    We investigate the origin of rare star formation in an otherwise red-and-dead population of S0 galaxies, using spatially resolved spectroscopy. Our sample consists of 120 low redshift (z < 0.1) star-forming S0 (SF-S0) galaxies from the SDSS-IV MaNGA DR15. We have selected this sample after a visual inspection of deep images from the DESI Legacy Imaging Surveys DR9 and the Subaru/HSC-SSP survey PDR3 to remove contamination from spiral galaxies. We also construct two control samples of star-forming spirals (SF-Sps) and quenched S0s (Q-S0s) to explore their evolutionary link with the star-forming S0s. To study star formation at resolved scales, we use dust-corrected H α luminosity and stellar density (Σ⋆) maps to construct radial profiles of star formation rate (SFR) surface density (ΣSFR) and specific SFR (sSFR). Examining these radial profiles, we find that star formation in SF-S0s is centrally dominated as opposed to disc-dominated star formation in spirals. We also compared various global (size–mass relation, bulge-to-total luminosity ratio) and local (central stellar velocity dispersion) properties of SF-S0s to those of the control sample galaxies. We find that SF-S0s are structurally similar to the quenched S0s and are different from star-forming spirals. We infer that SF-S0s are unlikely to be fading spirals. Inspecting stellar and gas velocity maps, we find that more than $50{{\ \rm per\ cent}}$ of the SF-S0 sample shows signs of recent galaxy interactions such as kinematic misalignment, counter-rotation, and unsettled kinematics. Based on these results, we conclude that in our sample of SF-S0s, star formation has been rejuvenated, with minor mergers likely to be a major driver.

     
    more » « less