skip to main content


Title: Star formation characteristics of CNN-identified post-mergers in the Ultraviolet Near Infrared Optical Northern Survey (UNIONS)
ABSTRACT

The importance of the post-merger epoch in galaxy evolution has been well documented, but post-mergers are notoriously difficult to identify. While the features induced by mergers can sometimes be distinctive, they are frequently missed by visual inspection. In addition, visual classification efforts are highly inefficient because of the inherent rarity of post-mergers (~1 per cent in the low-redshift Universe), and non-parametric statistical merger selection methods do not account for the diversity of post-mergers or the environments in which they appear. To address these issues, we deploy a convolutional neural network (CNN) that has been trained and evaluated on realistic mock observations of simulated galaxies from the IllustrisTNG simulations, to galaxy images from the Canada France Imaging Survey, which is part of the Ultraviolet Near Infrared Optical Northern Survey. We present the characteristics of the galaxies with the highest CNN-predicted post-merger certainties, as well as a visually confirmed subset of 699 post-mergers. We find that post-mergers with high CNN merger probabilities [p(x) > 0.8] have an average star formation rate that is 0.1 dex higher than a mass- and redshift-matched control sample. The SFR enhancement is even greater in the visually confirmed post-merger sample, a factor of 2 higher than the control sample.

 
more » « less
NSF-PAR ID:
10367999
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3294-3307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The kinematic disturbances associated with major galaxy mergers are known to produce gas inflows, which in turn may trigger accretion onto the supermassive black holes (SMBH) of the participant galaxies. While this effect has been studied in galaxy pairs, the frequency of active galactic nuclei (AGNs) in fully coalesced post-merger systems is poorly constrained due to the limited size or impurity of extant post-merger samples. Previously, we combined convolutional neural network (CNN) predictions with visual classifications to identify a highly pure sample of 699 post-mergers in deep r-band imaging. In the work presented here, we quantify the frequency of AGNs in this sample using three metrics: optical emission lines, mid-infrared (mid-IR) colour, and radio detection of low-excitation radio galaxies (LERGs). We also compare the frequency of AGNs in post-mergers to that in a sample of spectroscopically identified galaxy pairs. We find that AGNs identified by narrow-line optical emission and mid-IR colour have an increased incidence rate in post-mergers, with excesses of ~4 over mass- and redshift-matched controls. The optical and mid-IR AGN excesses in post-mergers exceed the values found for galaxy pairs, indicating that AGN activity in mergers peaks after coalescence. Conversely, we recover no significant excess of LERGs in post-mergers or pairs. Finally, we find that the [O iii] luminosity (a proxy for SMBH accretion rate) in post-mergers that host an optical AGN is ~0.3 dex higher on average than in non-interacting galaxies with an optical AGN, suggesting that mergers generate higher accretion rates than secular triggering mechanisms.

     
    more » « less
  2. Abstract

    We investigate the role of galaxy mergers in triggering active galactic nuclei (AGN) in the nearby universe. Our analysis is based on a sample of 79 post-merger remnant galaxies with deep X-ray observations from Chandra/XMM-Newton capable of detecting a low-luminosity AGN of ≥1040.5erg s−1. This sample is derived from a visually classified, volume-limited sample of 807 post-mergers identified in the Sloan Digital Sky Survey Data Release 14 with logM*/M≥ 10.5 and 0.02 ≤z≤ 0.06. We find that the X-ray AGN fraction in this sample is 55.7% ± 5.6% compared to 23.6% ± 2.8% for a mass- and redshift-matched noninteracting control sample. The multiwavelength AGN fraction (identified as an AGN in one of X-ray, IR, radio or optical diagnostics) for post-mergers is 76.6% ± 4.8% compared to 39.1% ± 3.2% for controls. Thus post-mergers exhibit a high overall AGN fraction with an excess between 2 and 4 depending on the AGN diagnostics used. In addition, we find most optical, IR, and radio AGN are also identified as X-ray AGN while a large fraction of X-ray AGN are not identified in any other diagnostic. This highlights the importance of deep X-ray imaging to identify AGN. We find that the X-ray AGN fraction of post-mergers is independent of the stellar mass above logM*/M≥ 10.5 unlike the trend seen in control galaxies. Overall, our results show that post-merger galaxies are a good tracer of the merger–AGN connection and strongly support the theoretical expectations that mergers trigger AGN.

     
    more » « less
  3. Abstract

    We present visual classifications of merger-induced tidal disturbances in 143M*∼ 1011Mpost-starburst galaxies atz∼ 0.7 identified in theSQuIGGLESample. This sample spectroscopically selects galaxies from the Sloan Digital Sky Survey that have stopped their primary epoch of star formation within the past ∼500 Myr. Visual classifications are performed on Hyper Suprime-Cam imaging. We compare to a control sample of mass- and redshift-matched star-forming and quiescent galaxies from the Large Early Galaxy Census and find that post-starburst galaxies are more likely to be classified as disturbed than either category. This corresponds to a factor of3.61.3+2.9times the disturbance rate of older quiescent galaxies and2.1.73+1.9times the disturbance rate of star-forming galaxies. Assuming tidal features persist for ≲500 Myr, this suggests merging is coincident with quenching in a significant fraction of these post-starbursts. Galaxies with tidal disturbances are younger on average than undisturbed post-starburst galaxies in our sample, suggesting tidal features from a major merger may have faded over time. This may be exacerbated by the fact that, on average, the undisturbed subset is fainter, rendering low-surface-brightness tidal features harder to identify. However, the presence of 10 young (≲150 Myr since quenching) undisturbed galaxies suggests that major mergers are not the only fast physical mechanism that shut down the primary epoch of star formation in massive galaxies at intermediate redshift.

     
    more » « less
  4. ABSTRACT

    Powerful outflows are thought to play a critical role in galaxy evolution and black hole growth. We present the first large-scale systematic study of ionized outflows in paired galaxies and post-mergers compared to a robust control sample of isolated galaxies. We isolate the impact of the merger environment to determine if outflow properties depend on merger stage. Our sample contains ∼4000 paired galaxies and ∼250 post-mergers in the local universe (0.02 ≤ z ≤ 0.2) from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) matched in stellar mass, redshift, local density of galaxies, and [O iii] λ5007 luminosity to a control sample of isolated galaxies. By fitting the [O iii] λ5007 line, we find ionized outflows in ∼15 per cent of our entire sample. Outflows are much rarer in star-forming galaxies compared to active galactic nuclei (AGNs), and outflow incidence and velocity increase with [O iii] λ5007 luminosity. Outflow incidence is significantly elevated in the optical + mid-infrared selected AGN compared to purely optical AGN; over 60 per cent show outflows at the highest luminosities ($L_{\mathrm{[OIII]~\lambda 5007}}\, \gtrsim$ 1042 erg s−1), suggesting mid-infrared AGN selection favours galaxies with powerful outflows, at least for higher [O iii] λ5007 luminosities. However, we find no statistically significant difference in outflow incidence, velocity, and luminosity in mergers compared to isolated galaxies, and there is no dependence on merger stage. Therefore, while interactions are predicted to drive gas inflows and subsequently trigger nuclear star formation and accretion activity, when the power source of the outflow is controlled for, the merging environment has no further impact on the large-scale ionized outflows as traced by [O iii] λ5007.

     
    more » « less
  5. ABSTRACT

    Post-starburst galaxies (PSBs) are defined as having experienced a recent burst of star formation, followed by a prompt truncation in further activity. Identifying the mechanism(s) causing a galaxy to experience a post-starburst phase therefore provides integral insight into the causes of rapid quenching. Galaxy mergers have long been proposed as a possible post-starburst trigger. Effectively testing this hypothesis requires a large spectroscopic galaxy survey to identify the rare PSBs as well as high-quality imaging and robust morphology metrics to identify mergers. We bring together these critical elements by selecting PSBs from the overlap of the Sloan Digital Sky Survey and the Canada–France Imaging Survey and applying a suite of classification methods: non-parametric morphology metrics such as asymmetry and Gini-M20, a convolutional neural network trained to identify post-merger galaxies, and visual classification. This work is therefore the largest and most comprehensive assessment of the merger fraction of PSBs to date. We find that the merger fraction of PSBs ranges from 19 per cent to 42 per cent depending on the merger identification method and details of the PSB sample selection. These merger fractions represent an excess of 3–46× relative to non-PSB control samples. Our results demonstrate that mergers play a significant role in generating PSBs, but that other mechanisms are also required. However, applying our merger identification metrics to known post-mergers in the IllustrisTNG simulation shows that 70 per cent of recent post-mergers (≲200 Myr) would not be detected. Thus, we cannot exclude the possibility that nearly all PSBs have undergone a merger in their recent past.

     
    more » « less