skip to main content

Title: A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae

We present optical photometry and spectroscopy of the superluminous SN 2002gh from maximum light to +204 d, obtained as part of the Carnegie Type II Supernova (CATS) project. SN 2002gh is among the most luminous discovered supernovae ever, yet it remained unnoticed for nearly two decades. Using Dark Energy Camera archival images we identify the potential supernova (SN) host galaxy as a faint dwarf galaxy, presumably having low metallicity, and in an apparent merging process with other nearby dwarf galaxies. We show that SN 2002gh is among the brightest hydrogen-poor SLSNe with MV = −22.40 ± 0.02, with an estimated peak bolometric luminosity of 2.6 ± 0.1 × 1044 erg s−1. We discount the decay of radioactive nickel as the main SN power mechanism, and assuming that the SN is powered by the spin-down of a magnetar we obtain two alternative solutions. The first case, is characterized by significant magnetar power leakage, and Mej between 0.6 and 3.2 M⊙, Pspin = 3.2 ms, and B = 5 × 1013 G. The second case does not require power leakage, resulting in a huge ejecta mass of about 30 M⊙, a fast spin period of Pspin ∼ 1 ms, and B ∼ 1.6 × 1014 G. We estimate a zero-age main-sequence mass between 14 and 25 M⊙ for the first case and of about 135 M⊙ for the second case. The latter case would place the SN progenitor among the most massive stars observed to explode as an SN.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 2627-2649
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches Mg = −21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 Å after ∼51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as Hα, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field Bp ≃ 6 × 1014 G, an initial period of the magnetar Pinitial ≃ 2.8 ms, an ejecta mass $M_{\rm ejecta}\simeq 9\, \mathrm{M}_\odot $ and an ejecta opacity $\kappa \simeq 0.08\, \mathrm{cm}^{2}\, \rm{g}^{-1}$. A CSM-interaction scenario would imply a CSM mass $\simeq 5\, \mathrm{M}_\odot $ and an ejecta mass $\simeq 12\, \mathrm{M}_\odot $. Finally, the nebular spectrum of phase  + 187 d was modeled, deriving a mass of $\sim 10\, {\rm M}_\odot$ for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive ($40\, {\rm M}_\odot$) star. 
    more » « less

    We present deep optical and near-infrared photometry of UID 30901, a superluminous supernova (SLSN) discovered during the UltraVISTA survey. The observations were obtained with VIRCAM (YJHKs) mounted on the VISTA telescope, DECam (griz) on the Blanco telescope, and SUBARU Hyper Suprime-Cam (HSC; grizy). These multiband observations comprise +700 d making UID 30901 one of the best photometrically followed SLSNe to date. The host galaxy of UID 30901 is detected in a deep HST F814W image with an AB magnitude of 27.3 ± 0.2. While no spectra exist for the SN or its host galaxy, we perform our analysis assuming z = 0.37, based on the photometric redshift of a possible host galaxy found at a projected distance of 7 kpc. Fitting a blackbody to the observations, the radius, temperature, and bolometric light curve are computed. We find a maximum bolometric luminosity of 5.4 ± 0.34 × 1043 erg s−1. A flattening in the light curve beyond 600 d is observed and several possible causes are discussed. We find the observations to clearly favour an SLSN type I, and plausible power sources such as the radioactive decay of 56Ni and the spin-down of a magnetar are compared to the data. We find that the magnetar model yields a good fit to the observations with the following parameters: a magnetic field B = 1.4 ± 0.3 × 1014 G, spin period of P = 6.0 ± 0.1 ms, and ejecta mass $M_{\mathrm{ ej}} = 11.9^{+4.8}_{-6.4} \,\mathrm{ M}_{\odot }$.

    more » « less
  3. null (Ed.)
    ABSTRACT We present the photometric and spectroscopic evolution of supernova (SN) 2019cad during the first ∼100 d from explosion. Based on the light-curve morphology, we find that SN 2019cad resembles the double-peaked Type Ib/c SN 2005bf and the Type Ic PTF11mnb. Unlike those two objects, SN 2019cad also shows the initial peak in the redder bands. Inspection of the g-band light curve indicates the initial peak is reached in ∼8 d, while the r-band peak occurred ∼15 d post-explosion. A second and more prominent peak is reached in all bands at ∼45 d past explosion, followed by a fast decline from ∼60 d. During the first 30 d, the spectra of SN 2019cad show the typical features of a Type Ic SN, however, after 40 d, a blue continuum with prominent lines of Si ii λ6355 and C ii λ6580 is observed again. Comparing the bolometric light curve to hydrodynamical models, we find that SN 2019cad is consistent with a pre-SN mass of 11 M⊙, and an explosion energy of 3.5 × 1051 erg. The light-curve morphology can be reproduced either by a double-peaked 56Ni distribution with an external component of 0.041 M⊙, and an internal component of 0.3 M⊙ or a double-peaked 56Ni distribution plus magnetar model (P ∼ 11 ms and B ∼ 26 × 1014 G). If SN 2019cad were to suffer from significant host reddening (which cannot be ruled out), the 56Ni model would require extreme values, while the magnetar model would still be feasible. 
    more » « less
  4. Context. SN 2020qlb (ZTF20abobpcb) is a hydrogen-poor superluminous supernova (SLSN-I) that is among the most luminous (maximum M g  = −22.25 mag) and that has one of the longest rise times (77 days from explosion to maximum). We estimate the total radiated energy to be > 2.1 × 10 51 erg. SN 2020qlb has a well-sampled light curve that exhibits clear near and post peak undulations, a phenomenon seen in other SLSNe, whose physical origin is still unknown. Aims. We discuss the potential power source of this immense explosion as well as the mechanisms behind its observed light curve undulations. Methods. We analyze photospheric spectra and compare them to other SLSNe-I. We constructed the bolometric light curve using photometry from a large data set of observations from the Zwicky Transient Facility (ZTF), Liverpool Telescope (LT), and Neil Gehrels Swift Observatory and compare it with radioactive, circumstellar interaction and magnetar models. Model residuals and light curve polynomial fit residuals are analyzed to estimate the undulation timescale and amplitude. We also determine host galaxy properties based on imaging and spectroscopy data, including a detection of the [O III] λ 4363, auroral line, allowing for a direct metallicity measurement. Results. We rule out the Arnett 56 Ni decay model for SN 2020qlb’s light curve due to unphysical parameter results. Our most favored power source is the magnetic dipole spin-down energy deposition of a magnetar. Two to three near peak oscillations, intriguingly similar to those of SN 2015bn, were found in the magnetar model residuals with a timescale of 32 ± 6 days and an amplitude of 6% of peak luminosity. We rule out centrally located undulation sources due to timescale considerations; and we favor the result of ejecta interactions with circumstellar material (CSM) density fluctuations as the source of the undulations. 
    more » « less

    SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of −21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼ 1.3 × 1013 G, and initial period of Pspin∼ 1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a ${\sim}40\, \mathrm{M}_\odot$ progenitor star.

    more » « less