skip to main content

Title: Comparison of quasi-geostrophic, hybrid and 3-D models of planetary core convection

We present investigations of rapidly rotating convection in a thick spherical shell geometry relevant to planetary cores, comparing results from quasi-geostrophic (QG), 3-D and hybrid QG-3D models. The 170 reported calculations span Ekman numbers, Ek, between 10−4 and 10−10, Rayleigh numbers, Ra, between 2 and 150 times supercritical and Prandtl numbers, Pr, between 10 and 10−2. The default boundary conditions are no-slip at both the ICB and the CMB for the velocity field, with fixed temperatures at the ICB and the CMB. Cases driven by both homogeneous and inhomogeneous CMB heat flux patterns are also explored, the latter including lateral variations, as measured by Q*, the peak-to-peak amplitude of the pattern divided by its mean, taking values up to 5. The QG model is based on the open-source pizza code. We extend this in a hybrid approach to include the temperature field on a 3-D grid. In general, we find convection is dominated by zonal jets at mid-depths in the shell, with thermal Rossby waves prominent close to the outer boundary when the driving is weaker. For the thick spherical shell geometry studied here the hybrid method is best suited for studying convection at modest forcing, $Ra \le 10 \, more » Ra_c$ when Pr = 1, and departs from the 3-D model results at higher Ra, displaying systematically lower heat transport characterized by lower Nusselt and Reynolds numbers. We find that the lack of equatorially-antisymmetric motions and z-correlations between temperature and velocity in the buoyancy force contributes to the weaker flows in the hybrid formulation. On the other hand, the QG models yield broadly similar results to the 3-D models, for the specific aspect ratio and range of Rayleigh numbers explored here. We cannot point to major disagreements between these two data sets at Pr ≥ 0.1, with the QG model effectively more strongly driven than the hybrid case due to its cylindrically averaged thermal boundary conditions. When Pr is decreased, the range of agreement between the hybrid and 3-D models expands, for example up to $Ra \le 15 \, Ra_c$ at Pr = 0.1, indicating the hybrid method may be better suited to study convection in the low Pr regime. We thus observe a transition between two regimes: (i) at Pr ≥ 0.1 the QG and 3-D models agree in the studied range of Ra/Rac while the hybrid model fails when $Ra\gt 15\, Ra_c$ and (ii) at Pr = 0.01 the QG and 3-D models disagree for $Ra\gt 10\, Ra_c$ while the hybrid and 3-D models agree fairly well up to $Ra \sim 20\, Ra_c$. Models that include laterally varying heat flux at the outer boundary reproduce regional convection patterns that compare well with those found in similarly forced 3-D models. Previously proposed scaling laws for rapidly rotating convection are tested; our simulations are overall well described by a triple balance between Coriolis, inertia and Archimedean forces with the length-scale of the convection following the diffusion-free Rhines-scaling. The magnitude of Pr affects the number and the size of the jets with larger structures obtained at lower Pr. Higher velocities and lower heat transport are seen on decreasing Pr with the scaling behaviour of the convective velocity displaying a strong dependence on Pr. This study is an intermediate step towards a hybrid model of core convection also including 3-D magnetic effects.

« less
; ;
Publication Date:
Journal Name:
Geophysical Journal International
Page Range or eLocation-ID:
p. 129-158
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. We use well resolved numerical simulations with the lattice Boltzmann method to study Rayleigh–Bénard convection in cells with a fractal boundary in two dimensions for $Pr = 1$ and $Ra \in \left [10^7, 10^{10}\right ]$ , where Pr and Ra are the Prandtl and Rayleigh numbers. The fractal boundaries are functions characterized by power spectral densities $S(k)$ that decay with wavenumber, $k$ , as $S(k) \sim k^{p}$ ( $p < 0$ ). The degree of roughness is quantified by the exponent $p$ with $p < -3$ for smooth (differentiable) surfaces and $-3 \le p < -1$ for rough surfaces with Hausdorff dimension $D_f=\frac {1}{2}(p+5)$ . By computing the exponent $\beta$ using power law fits of $Nu \sim Ra^{\beta }$ , where $Nu$ is the Nusselt number, we find that the heat transport scaling increases with roughness through the top two decades of $Ra \in \left [10^8, 10^{10}\right ]$ . For $p$ $= -3.0$ , $-2.0$ and $-1.5$ we find $\beta = 0.288 \pm 0.005, 0.329 \pm 0.006$ and $0.352 \pm 0.011$ , respectively. We also find that the Reynolds number, $Re$ , scales as $Re \sim Ra^{\xi }$ , where $\xi \approx 0.57$ over $Ra \in \left [10^7, 10^{10}\right ]$more », for all $p$ used in the study. For a given value of $p$ , the averaged $Nu$ and $Re$ are insensitive to the specific realization of the roughness.« less
  2. The connection between the heat transfer and characteristic flow velocities of planetary core-style convection remains poorly understood. To address this, we present novel laboratory models of rotating Rayleigh–Bénard convection in which heat and momentum transfer are simultaneously measured. Using water (Prandtl number, Pr≃6) and cylindrical containers of diameter-to-height aspect ratios of Γ≃3,1.5,0.75, the non-dimensional rotation period (Ekman number, E) is varied between 10−7≲E≲3×10−5 and the non-dimensional convective forcing (Rayleigh number, Ra) ranges from 107≲Ra≲1012. Our heat transfer data agree with those of previous studies and are largely controlled by boundary layer dynamics. We utilize laser Doppler velocimetry (LDV) to obtain experimental point measurements of bulk axial velocities, resulting in estimates of the non-dimensional momentum transfer (Reynolds number, Re) with values between 4×102≲Re≲5×104. Behavioral transitions in the velocity data do not exist where transitions in heat transfer behaviors occur, indicating that bulk dynamics are not controlled by the boundary layers of the system. Instead, the LDV data agree well with the diffusion-free Coriolis–Inertia–Archimedian (CIA) scaling over the range of Ra explored. Furthermore, the CIA scaling approximately co-scales with the Viscous–Archimedian–Coriolis (VAC) scaling over the parameter space studied. We explain this observation by demonstrating that the VAC and CIA relations will co-scalemore »when the local Reynolds number in the fluid bulk is of order unity. We conclude that in our experiments and similar laboratory and numerical investigations with E≳10−7, Ra≲1012, Pr≃7, heat transfer is controlled by boundary layer physics while quasi-geostrophically turbulent dynamics relevant to core flows robustly exist in the fluid bulk.« less
  3. The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $Ra\to \infty$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $Nu \sim Ra^{1/3}$ or ‘ultimate’ $Nu \sim Ra^{1/2}$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $10^{14}$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continuesmore »to be dominated by heat transport in steady rolls as $Ra\to \infty$ , it cannot achieve the ultimate scaling.« less
  4. The study of thermal convection in porous media is of both fundamental and practical interest. Typically, numerical studies have relied on the volume-averaged Darcy–Oberbeck–Boussinesq (DOB) equations, where convection dynamics are assumed to be controlled solely by the Rayleigh number ( Ra ). Nusselt numbers ( Nu ) from these models predict Nu – Ra scaling exponents of 0.9–0.95. However, experiments and direct numerical simulations (DNS) have suggested scaling exponents as low as 0.319. Recent findings for solutal convection between DNS and DOB models have demonstrated that the ‘pore-scale parameters’ not captured by the DOB equations greatly influence convection. Thermal convection also has the additional complication of different thermal transport properties (e.g. solid-to-fluid thermal conductivity ratio k s / k f and heat capacity ratio σ ) in different phases. Thus, in this work we compare results for thermal convection from the DNS and DOB equations. On the effects of pore size, DNS results show that Nu increases as pore size decreases. Mega-plumes are also found to be more frequent and smaller for reduced pore sizes. On the effects of conjugate heat transfer, two groups of cases (Group 1 with varying k s / k f at σ  = 1 and Groupmore »2 with varying σ at k s / k f  = 1) are examined to compare the Nu – Ra relations at different porosity ( ϕ ) and k s / k f and σ values. Furthermore, we report that the boundary layer thickness is determined by the pore size in DNS results, while by both the Rayleigh number and the effective heat capacity ratio, $\bar{\phi } = \phi + (1 - \phi )\sigma$ , in the DOB model.« less
  5. Steady two-dimensional Rayleigh–Bénard convection between stress-free isothermal boundaries is studied via numerical computations. We explore properties of steady convective rolls with aspect ratios ${\rm \pi} /5\leqslant \varGamma \leqslant 4{\rm \pi}$ , where $\varGamma$ is the width-to-height ratio for a pair of counter-rotating rolls, over eight orders of magnitude in the Rayleigh number, $10^3\leqslant Ra\leqslant 10^{11}$ , and four orders of magnitude in the Prandtl number, $10^{-2}\leqslant Pr\leqslant 10^2$ . At large $Ra$ where steady rolls are dynamically unstable, the computed rolls display $Ra \rightarrow \infty$ asymptotic scaling. In this regime, the Nusselt number $Nu$ that measures heat transport scales as $Ra^{1/3}$ uniformly in $Pr$ . The prefactor of this scaling depends on $\varGamma$ and is largest at $\varGamma \approx 1.9$ . The Reynolds number $Re$ for large- $Ra$ rolls scales as $Pr^{-1} Ra^{2/3}$ with a prefactor that is largest at $\varGamma \approx 4.5$ . All of these large- $Ra$ features agree quantitatively with the semi-analytical asymptotic solutions constructed by Chini & Cox ( Phys. Fluids , vol. 21, 2009, 083603). Convergence of $Nu$ and $Re$ to their asymptotic scalings occurs more slowly when $Pr$ is larger and when $\varGamma$ is smaller.