skip to main content

Title: The Persistent Ionospheric Responses Over Japan After the Impact of the 2011 Tohoku Earthquake

In this study, we report the persistent impacts of the 2011 Tohoku earthquake/tsunami on the ionosphere using the ground‐based Global Navigation Satellite System and FORMOSAT‐3/COSMIC total electron content. Multiple unusual ionospheric phenomena, such as ionospheric irregularities, nighttime medium‐scale traveling ionospheric disturbances (MSTIDs), and planar traveling ionospheric disturbances (TIDs), were observed after the emergence of tsunami‐induced concentric gravity waves. The ionospheric irregularities initially developed over the Hokkaido region following the interference of gravity waves at ~8:45 UT. Remarkably, the Perkins‐type nighttime MSTIDs accompanying the planar TIDs were discernible over Japan following the irregularities. By comparing with the tsunami model simulation and ocean buoy observations, it is determined that these planar TIDs, lasting for about 10 hr, were likely related to tsunami ocean waves reflected by seamounts, ridges, islands, and seafloor topography in the Pacific Ocean. Due to the absence of sporadicElayers, we suggest that the coupling between the tsunami‐generated gravity waves and the Perkins instability plays an essential role in initiating the equinoctial nighttime MSTIDs. The long‐lasting tsunami can continuously impact the ionosphere, affecting the nighttime ionospheric electrodynamics and making the conditions conducive for the development of midlatitude nighttime ionospheric irregularities and instabilities.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study presents the conjugate ionospheric disturbances triggered by the 2011 Tohoku‐Oki reflected tsunami oceanic waves using the ground‐based Global Navigation Satellite System (GNSS) total electron content (TEC) observations. We found that the equatorward and westward propagating nighttime medium‐scale traveling ionospheric disturbances (MSTIDs) occurred over Japan and Australia simultaneously following the tsunami oceanic waves reflected by the Emperor Seamount Chain in the northern hemisphere. The atmospheric gravity waves driven by reflected tsunami oceanic waves are hypothesized to be the source to trigger the conjugate MSTIDs by transporting the polarization electric fields along the field line to the conjugate hemisphere. Moreover, only the southwestward propagating MSTIDs have this conjugate effect, which could be due to the wavefront orientation. The Perkins instability could also be involved in the interhemispheric coupling process. This study provides the first observational evidence that the reflected tsunami can induce conjugate ionospheric disturbances through electrodynamic forcing.

    more » « less
  2. Abstract

    Medium‐scale Traveling Ionospheric Disturbances (MSTIDs) are prominent and ubiquitous features of the mid‐latitude ionosphere, and are observed in Super Dual Auroral Radar Network (SuperDARN) and high‐resolution Global Navigational Satellite Service (GNSS) Total Electron Content (TEC) data. The mechanisms driving these MSTIDs are an open area of research, especially during geomagnetic storms. Previous studies have demonstrated that nightside MSTIDs are associated with an electrodynamic instability mechanism like Perkins, especially during geomagnetically quiet conditions. However, dayside MSTIDs are often associated with atmospheric gravity waves. Very few studies have analyzed the mechanisms driving MSTIDs during strong geomagnetic storms at mid‐latitudes. In this study, we present mid‐latitude MSTIDs observed in de‐trended GNSS TEC data and SuperDARN radars over the North American sector, during a geomagnetic storm (peakKpreaching 9) on 7–8 September 2017. In SuperDARN, MSTIDs were observed in ionospheric backscatter with Line of Sight (LOS) velocities exceeding 800 m/s. Additionally, radar LOS velocities oscillated with amplitudes reaching ±500 m/s as the MSTIDs passed through the fields‐of‐view. In detrended TEC, these MSTIDs produced perturbations reaching ∼50 percent of background TEC magnitude. The MSTIDs were observed to propagate in the westward/south‐westward direction with a time period of ∼15 min. Projecting de‐trended GNSS TEC data along SuperDARN beams showed that enhancements in TEC were correlated with enhancements in SuperDARN SNR and positive LOS velocities. Finally, SuperDARN LOS velocities systematically switched polarities between the crests and the troughs of the MSTIDs, indicating the presence of polarization electric fields and an electrodynamic instability process during these MSTIDs.

    more » « less
  3. Abstract

    A statistical picture of the occurrence and characteristics of Traveling Ionospheric Disturbances (TIDs) over the Antarctic Peninsula is established using Global Navigation Satellite System Total Electron Content and High Frequency sounding observations. The measured parameters of the majority of the disturbances allow classifying them as medium scale TIDs (MSTIDs). Overall, the observed climatology of ionospheric disturbances in the Antarctic Peninsula region varies significantly with the season and makes it possible to differentiate two major types of the disturbances: winter daytime and summer nighttime, based on their occurrence periods and characteristics. During the Antarctic summer period, the disturbances are present mainly during the nighttime and morning hours, when the background plasma density is at maximum (due to Weddell Sea Anomaly). These disturbances predominantly propagate northwestward and their occurrence probability is well correlated with the sporadic E layer observations, suggesting that these are electrified MSTIDs. During the winter, the TID events are almost exclusively observed during the daytime. The propagation direction of the disturbances during the daytime shows a strong correlation with the background neutral wind direction in the thermosphere. A possible mechanism for this effect is wind filtering of the Atmospheric Gravity Waves originating in the troposphere, which indicates that their source is in the lower atmosphere. The periods of the TIDs also significantly differ between the seasons. Wintertime TIDs have noticeably shorter periods (10–50 min) than those observed during other parts of the year (30–140 min), which also likely reflects the fact that the two types of TIDs are generated by different physical mechanisms.

    more » « less
  4. Abstract

    We investigate the correlation of sporadic E (Es) with the occurrence of medium‐scale traveling ionospheric disturbances (MSTIDs) at night in middle latitudes (25°–40°N and 25°–40°S magnetic latitudes) by examining their occurrence climatology. The occurrence climatology of Es and MSTIDs is derived using the Challenging Minisatellite Payload satellite data acquired in 2001–2008 and 2001–2009, respectively. Electron density irregularities and radio scintillations are used as the detection proxies of MSTIDs and Es, respectively. The occurrence rate of MSTIDs shows a semi‐annual variation with the primary peak during June solstices and the secondary peak during December solstices in both hemispheres. However, the occurrence rate of Es shows a seasonal variation with a pronounced peak in summer in both hemispheres. The occurrence of MSTIDs during local summer and equinoxes is correlated with the occurrence of local Es, but the high occurrence rate of MSTIDs in local winter is not correlated with local winter hemisphere Es. MSTIDs in the winter hemisphere are correlated with magnetically conjugate MSTIDs in the summer hemisphere; these summer hemisphere MSTIDs are correlated with the occurrence of Es in the summer hemisphere. The occurrence rate of MSTIDs clearly shows an increase with decreasing solar activity, but the solar cycle dependence of Es is not obvious from the data. This observation suggests that the generation of MSTIDs is significantly affected by factors other than Es such as the growth rate of the Perkins instability, atmospheric gravity waves, and theFregion conductance.

    more » « less
  5. The impact of regional-scale neutral atmospheric waves has been demonstrated to have profound effects on the ionosphere, but the circumstances under which they generate ionospheric disturbances and seed plasma instabilities are not well understood. Neutral atmospheric waves vary from infrasonic waves of <20 Hz to gravity waves with periods on the order of 10 min, for simplicity, hereafter they are combined under the common term Acoustic and Gravity Waves (AGWs). There are other longer period waves like planetary waves from the lower and middle atmosphere, whose effects are important globally, but they are not considered here. The most ubiquitous and frequently observed impact of AGWs on the ionosphere are Traveling Ionospheric Disturbances (TIDs), but AGWs also affect the global ionosphere/thermosphere circulation and can trigger ionospheric instabilities (e.g., Perkins, Equatorial Spread F). The purpose of this white paper is to outline additional studies and observations that are required in the coming decade to improve our understanding of the impact of AGWs on the ionosphere. 
    more » « less