skip to main content

Title: Evidence for the Late Arrival of Hot Jupiters in Systems with High Host-star Obliquities

It has been shown that hot Jupiters systems with massive, hot stellar primaries exhibit a wide range of stellar obliquities. On the other hand, hot Jupiter systems with low-mass, cool primaries often have stellar obliquities close to zero. Efficient tidal interactions between hot Jupiters and the convective envelopes present in lower-mass main-sequence stars have been a popular explanation for these observations. If this explanation is accurate, then aligned systems should be older than misaligned systems. Likewise, the convective envelope mass of a hot Jupiter’s host star should be an effective predictor of its obliquity. We derive homogeneous stellar parameters—including convective envelope masses—for hot Jupiter host stars with high-quality sky-projected obliquity inferences. Using a thin-disk stellar population’s Galactic velocity dispersion as a relative age proxy, we find that hot Jupiter host stars with larger-than-median obliquities are older than hot Jupiter host stars with smaller-than-median obliquities. The relative age difference between the two populations is larger for hot Jupiter host stars with smaller-than-median fractional convective envelope masses and is significant at the 3.6σlevel. We identify stellar mass, not convective envelope mass, as the best predictor of stellar obliquity in hot Jupiter systems. The best explanation for these observations is that many more » hot Jupiters in misaligned systems arrived in the close proximity of their host stars long after their parent protoplanetary disks dissipated. The dependence of observed age offset on convective envelope mass suggests that tidal realignment contributes to the population of aligned hot Jupiters orbiting stars with convective envelopes.

« less
Award ID(s):
Publication Date:
Journal Name:
The Astronomical Journal
Page Range or eLocation-ID:
Article No. 26
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High-eccentricity migration is a likely formation mechanism for many observed hot Jupiters, particularly those with a large misalignment between the stellar spin axis and orbital angular momentum axis of the planet. In one version of high-eccentricity migration, an inclined stellar companion excites von Zeipel–Lidov–Kozai (ZLK) eccentricity oscillations of a cold Jupiter, and tidal dissipation causes the planet’s orbit to shrink and circularize. Throughout this process, the stellar spin can evolve chaotically, resulting in highly misaligned hot Jupiters (HJs). Previous population studies of this migration mechanism have assumed that the stellar spin is aligned with the planetary orbital angular momentum when the companion begins to induce ZLK oscillations. However, in the presence of a binary companion, the star’s obliquity may be significantly excited during the dissipation of its protoplanetary disk. We calculate the stellar obliquities produced in the protoplanetary disk phase and use these to perform an updated population synthesis of ZLK-driven high-eccentricity migration with an F-type host star. We find that the resulting obliquity distribution of HJ systems is predominantly retrograde with a broad peak near 90°. The distribution we obtain has intriguing similarities to the recently observed preponderance of perpendicular planets close to their host stars.

  2. Abstract

    The distribution of spin–orbit angles for systems with wide-separation, tidally detached exoplanets offers a unique constraint on the prevalence of dynamically violent planetary evolution histories. Tidally detached planets provide a relatively unbiased view of the primordial stellar obliquity distribution, as they cannot tidally realign within the system lifetime. We present the third result from our Stellar Obliquities in Long-period Exoplanet Systems (SOLES) survey: a measurement of the Rossiter–McLaughlin effect across two transits of the tidally detached warm Jupiter TOI-1478 b with the WIYN/NEID and Keck/HIRES spectrographs, revealing a sky-projected spin–orbit angleλ=6.25.5+5.9°. Combining this new measurement with the full set of archival obliquity measurements, including two previous constraints from the SOLES survey, we demonstrate that, in single-star systems, tidally detached warm Jupiters are preferentially more aligned than closer-orbiting hot Jupiters. This finding has two key implications: (1) planets in single-star systems tend to form within aligned protoplanetary disks, and (2) warm Jupiters form more quiescently than hot Jupiters, which, in single-star systems, are likely perturbed into a misaligned state through planet–planet interactions in the post-disk-dispersal phase. We also find that lower-mass Saturns span a wide range of spin–orbit angles, suggesting a prevalence of planet–planet scattering and/or secularmore »mechanisms in these systems.

    « less
  3. Abstract We present spectroscopic measurements of the Rossiter–McLaughlin effect for WASP-148b, the only known hot Jupiter with a nearby warm-Jupiter companion, from the WIYN/NEID and Keck/HIRES instruments. This is one of the first scientific results reported from the newly commissioned NEID spectrograph, as well as the second obliquity constraint for a hot Jupiter system with a close-in companion, after WASP-47. WASP-148b is consistent with being in alignment with the sky-projected spin axis of the host star, with λ = − 8 .° 2 − 9 .° 7 + 8 .° 7 . The low obliquity observed in the WASP-148 system is consistent with the orderly-alignment configuration of most compact multi-planet systems around cool stars with obliquity constraints, including our solar system, and may point to an early history for these well-organized systems in which migration and accretion occurred in isolation, with relatively little disturbance. By contrast, previous results have indicated that high-mass and hot stars appear to more commonly host a wide range of misaligned planets: not only single hot Jupiters, but also compact systems with multiple super-Earths. We suggest that, to account for the high rate of spin–orbit misalignments in both compact multi-planet and isolated-hot-Jupiter systems orbiting high-mass andmore »hot stars, spin–orbit misalignments may be caused by distant giant planet perturbers, which are most common around these stellar types.« less
  4. Abstract

    The obliquity of a star, or the angle between its spin axis and the average orbit normal of its companion planets, provides a unique constraint on that system’s evolutionary history. Unlike the solar system, where the Sun’s equator is nearly aligned with its companion planets, many hot-Jupiter systems have been discovered with large spin–orbit misalignments, hosting planets on polar or retrograde orbits. We demonstrate that, in contrast to stars harboring hot Jupiters on circular orbits, those with eccentric companions follow no population-wide obliquity trend with stellar temperature. This finding can be naturally explained through a combination of high-eccentricity migration and tidal damping. Furthermore, we show that the joint obliquity and eccentricity distributions observed today are consistent with the outcomes of high-eccentricity migration, with no strict requirement to invoke the other hot-Jupiter formation mechanisms of disk migration or in situ formation. At a population-wide level, high-eccentricity migration can consistently shape the dynamical evolution of hot-Jupiter systems.

  5. Abstract

    The orientation between a star’s spin axis and a planet’s orbital plane provides valuable information about the system’s formation and dynamical history. For non-transiting planets at wide separations, true stellar obliquities are challenging to measure, but lower limits on spin–orbit orientations can be determined from the difference between the inclination of the star’s rotational axis and the companion’s orbital plane (Δi). We present results of a uniform analysis of rotation periods, stellar inclinations, and obliquities of cool stars (SpT ≳ F5) hosting directly imaged planets and brown dwarf companions. As part of this effort, we have acquired newvsini*values for 22 host stars with the high-resolution Tull spectrograph at the Harlan J. Smith telescope. Altogether our sample contains 62 host stars with rotation periods, most of which are newly measured using light curves from the Transiting Exoplanet Survey Satellite. Among these, 53 stars have inclinations determined from projected rotational and equatorial velocities, and 21 stars predominantly hosting brown dwarfs have constraints on Δi. Eleven of these (5211+10% of the sample) are likely misaligned, while the remaining 10 host stars are consistent with spin–orbit alignment. As an ensemble, the minimum obliquity distribution between 10 andmore »250 au is more consistent with a mixture of isotropic and aligned systems than either extreme scenario alone—pointing to direct cloud collapse, formation within disks bearing primordial alignments and misalignments, or architectures processed by dynamical evolution. This contrasts with stars hosting directly imaged planets, which show a preference for low obliquities. These results reinforce an emerging distinction between the orbits of long-period brown dwarfs and giant planets in terms of their stellar obliquities and orbital eccentricities.

    « less