skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: GLIDER: function prediction from GLIDE-based neighborhoods
Abstract Motivation

Protein function prediction, based on the patterns of connection in a protein–protein interaction (or association) network, is perhaps the most studied of the classical, fundamental inference problems for biological networks. A highly successful set of recent approaches use random walk-based low-dimensional embeddings that tend to place functionally similar proteins into coherent spatial regions. However, these approaches lose valuable local graph structure from the network when considering only the embedding. We introduce GLIDER, a method that replaces a protein–protein interaction or association network with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method, which was designed to predict missing links in protein–protein association networks, capturing implicit local and global (i.e. embedding-based) graph properties.

Results

GLIDER outperforms competing methods on the task of predicting GO functional labels in cross-validation on a heterogeneous collection of four human protein–protein association networks derived from the 2016 DREAM Disease Module Identification Challenge, and also on three different protein–protein association networks built from the STRING database. We show that this is due to the strong functional enrichment that is present in the local GLIDER neighborhood in multiple different types of protein–protein association networks. Furthermore, we introduce the GLIDER graph neighborhood as a way for biologists to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have known involvement in Parkinson’s disease pathways, plus suggest some new genes to study.

Availability and implementation

All code is publicly available and can be accessed here: https://github.com/kap-devkota/GLIDER.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
Award ID(s):
1812503 1934553
NSF-PAR ID:
10368203
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
38
Issue:
13
ISSN:
1367-4803
Format(s):
Medium: X Size: p. 3395-3406
Size(s):
["p. 3395-3406"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation One of the core problems in the analysis of biological networks is the link prediction problem. In particular, existing interactions networks are noisy and incomplete snapshots of the true network, with many true links missing because those interactions have not yet been experimentally observed. Methods to predict missing links have been more extensively studied for social than for biological networks; it was recently argued that there is some special structure in protein–protein interaction (PPI) network data that might mean that alternate methods may outperform the best methods for social networks. Based on a generalization of the diffusion state distance, we design a new embedding-based link prediction method called global and local integrated diffusion embedding (GLIDE). GLIDE is designed to effectively capture global network structure, combined with alternative network type-specific customized measures that capture local network structure. We test GLIDE on a collection of three recently curated human biological networks derived from the 2016 DREAM disease module identification challenge as well as a classical version of the yeast PPI network in rigorous cross validation experiments. Results We indeed find that different local network structure is dominant in different types of biological networks. We find that the simple local network measures are dominant in the highly connected network core between hub genes, but that GLIDE’s global embedding measure adds value in the rest of the network. For example, we make GLIDE-based link predictions from genes known to be involved in Crohn’s disease, to genes that are not known to have an association, and make some new predictions, finding support in other network data and the literature. Availability and implementation GLIDE can be downloaded at https://bitbucket.org/kap_devkota/glide. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract Motivation

    Accurately representing biological networks in a low-dimensional space, also known as network embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an unsupervised method based on biased random walks. However, while many networks, including functional gene interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge weights during the biased random walk generation process, thus under-using all the information in the network.

    Results

    Here, we present node2vec+, a natural extension of node2vec that accounts for edge weights when calculating walk biases and reduces to node2vec in the cases of unweighted graphs or unbiased walks. Using two synthetic datasets, we empirically show that node2vec+ is more robust to additive noise than node2vec in weighted graphs. Then, using genome-scale functional gene networks to solve a wide range of gene function and disease prediction tasks, we demonstrate the superior performance of node2vec+ over node2vec in the case of weighted graphs. Notably, due to the limited amount of training data in the gene classification tasks, graph neural networks such as GCN and GraphSAGE are outperformed by both node2vec and node2vec+.

    Availability and implementation

    The data and code are available on GitHub at https://github.com/krishnanlab/node2vecplus_benchmarks. All additional data underlying this article are available on Zenodo at https://doi.org/10.5281/zenodo.7007164.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Higher-order interaction patterns among proteins have the potential to reveal mechanisms behind molecular processes and diseases. While clustering methods are used to identify functional groups within molecular interaction networks, these methods largely focus on edge density and do not explicitly take into consideration higher-order interactions. Disease genes in these networks have been shown to exhibit rich higher-order structure in their vicinity, and considering these higher-order interaction patterns in network clustering have the potential to reveal new disease-associated modules.

    Results

    We propose a higher-order community detection method which identifies community structure in networks with respect to specific higher-order connectivity patterns beyond edges. Higher-order community detection on four different protein–protein interaction networks identifies biologically significant modules and disease modules that conventional edge-based clustering methods fail to discover. Higher-order clusters also identify disease modules from genome-wide association study data, including new modules that were not discovered by top-performing approaches in a Disease Module DREAM Challenge. Our approach provides a more comprehensive view of community structure that enables us to predict new disease–gene associations.

    Availability and implementation

    https://github.com/Reed-CompBio/graphlet-clustering.

     
    more » « less
  4. Abstract Motivation

    The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly non-linear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks.

    Results

    We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting gene ontology terms of varying type and specificity.

    Availability and implementation

    deepNF is freely available at: https://github.com/VGligorijevic/deepNF.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    As an increasing amount of protein–protein interaction (PPI) data becomes available, their computational interpretation has become an important problem in bioinformatics. The alignment of PPI networks from different species provides valuable information about conserved subnetworks, evolutionary pathways and functional orthologs. Although several methods have been proposed for global network alignment, there is a pressing need for methods that produce more accurate alignments in terms of both topological and functional consistency.

    Results

    In this work, we present a novel global network alignment algorithm, named ModuleAlign, which makes use of local topology information to define a module-based homology score. Based on a hierarchical clustering of functionally coherent proteins involved in the same module, ModuleAlign employs a novel iterative scheme to find the alignment between two networks. Evaluated on a diverse set of benchmarks, ModuleAlign outperforms state-of-the-art methods in producing functionally consistent alignments. By aligning Pathogen–Human PPI networks, ModuleAlign also detects a novel set of conserved human genes that pathogens preferentially target to cause pathogenesis.

    Availability

    http://ttic.uchicago.edu/∼hashemifar/ModuleAlign.html

    Contact

    canzar@ttic.edu or j3xu.ttic.edu

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less